
Particle Swarm Optimization with
Protozoic Behaviour

Václav Snášel, Pavel Krömer, Ajith Abraham
IT4Innovations & Department of Computer Science

VŠB-Technical University of Ostrava

17. listopadu 12, Ostrava-Poruba, Czech Republic

Email: {vaclav.snasel,pavel.kromer,ajith.abraham}@vsb.cz

Abstract—Nature inspired algorithms implement successful
optimization and adaptation strategies observed in the nature.
Various bio-inspired algorithms mimic the behavioural patterns
of plants, animals, their communities and their evolution. Surpris-
ingly, the behavioural patterns and survival strategies of protozoa,
one of the most prevalent and successful species on Earth, did
not receive significant attention from the bio-inspired computing
community until present time. This study proposes a new variant
of Particle Swarm Optimization incorporating behaviour inspired
by protozoa and evaluates the performance of such an algorithm
on a set of well known test functions.

Index Terms—Bio-inspired algorithms; particle swarm opti-
mization; protozoic behaviour

I. INTRODUCTION

Bio-inspired meta-heuristic algorithms use optimization

strategies seen in the nature to solve practical search and

optimization problems [1]. They mimic various natural phe-

nomena including evolution and survival of the fittest (e.g.

Evolutionary Algorithms [1]), behavioural patterns of individ-

ual organisms and collective intelligent behaviour of plants

(e.g. Invasive Weed Optimization [2]), animals (e.g. Swarm

Intelligent algorithms [1]). and human groups (e.g. Harmony

Search [3]). The algorithms share a common goal of solving

given problem but vary in the strategy they chose to explore

(browse) problem space. The well known no free lunch the-

orem shows that different algorithms perform differently for

different problems and classes of problems [4]. In conclusion,

it advocates experimental evaluation of performance (speed

of convergence, accuracy of results) of different algorithms

for different problems, search for new variants of known

algorithms and search for novel optimization algorithms.

Protozoa are a large group of unicellular organisms some of

which exhibit an interesting behaviour [5], [6]. Motile protozoa

hunt and feed like animals. However, their reproduction and

survival strategy differs significantly from those of complex

multicellular animals. The survival strategy of some proto-

zoan species can be characterized by longevity (seemingly

infinite lifespan), environment driven changes of reproduction

strategies, and the presence of programmed cell death [5], [6],

[7], [8]. Needless to say, such a behaviour appears to be a

successful strategy as protozoa are an abundant, diverse, and

versatile global family of organisms.

In this study we propose a modified Particle Swarm Opti-

mization (PSO) [9], [1] algorithm extended by some elements

of protozoic behaviour and evaluate the performance of pro-

tozoic PSO on a set of well-known test functions. The rest

of this paper is structured in the following way: section II

provides a brief introduction of protozoa and summary of

computationally interesting reproductive behaviour of motile

protozoa. Section III outlines related work and section IV

describes the proposed modified protozoic PSO algorithm.The

algorithm is experimentally evaluated in section V and con-

clusions are drawn in section VI.

II. PROTOZOA

Protozoa are unicellular eukaryotic microorganisms that

lack cell walls. Some protozoa are motile at some stage of

their life cycle and exhibit animal-like behaviour such as

hunting and feeding [6], [10], [11]. Protozoa are diverse,

ubiquitous, abundant, and have been recently proposed (due

to these properties) as model organisms in microbiology [12].

They can be often found in aquatic environments. Ciliated

protozoa Tetrahymena thermophila is shown in fig. 1. The cilia

clearly visible on the picture are used to move the cell in its

environment.

Fig. 1: Tetrahymena thermophila, a ciliated protozoa. Image

from [12].

A. Fission and Conjugation

Some ciliated protozoa, including Tetrahymena ther-
mophila, exhibit an interesting behaviour (slightly varying

for different species) [6]. Their reproduction is based on

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI

2026

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.347

2026

a repeating asexual divide-growth cycle during which the

protozoans create almost identical clones of themselves in

a process called fission. Asexually reproducing protozoans

are subject to senscence (degradation) due to accumulation

of lethal genes. Fission rate of protozoans depends on the

environment (availability of food), clonal age of the cell

(decreases in time), and genetics of the cell [6].

Sexuality is in protozoa decoupled from reproduction and

represents a qualitative rather than quantitative change (in con-

trast with fission). Two different protozoa participate in sexual

conjugation and form two identical new cells. During the

process, important parts of the cell including the macronucleus

responsible for functioning of the cell are regenerated. The

conjugation has for many species of protozoa repairing and

rejuvenating effect and resets the fission rate [6].

The behaviour of protozoa is driven by environmental

conditions. When the food is abundant and environmental

conditions are good, protozoa culture progresses by fission.

When the environmental conditions worsen, sexual conjugation

starts to happen and genetically new rejuvenated cells are

created [6]. In extremely hostile environments, some species of

protozoa form resistant cysts that can survive until the living

conditions improve [5].

The combination of fission and conjugation allows achiev-

ing clonal longevity and even a state similar to immortality

(infinite lifespan) in which a culture of protozoa, given good

environmental and nutrient conditions, flourishes for thousands

of generations [6].

Reproduction by fission and conjugation is a specific sur-

vival strategy that (along with some other specific features)

works very well for protozoa. In this work we enhance the

PSO with protozoic behaviour in order to obtain a more robust

version of PSO backed by a solid biological inspiration.

III. RELATED WORK

Despite its success, the survival strategy of protozoa and its

properties have been investigated by just a couple of studies

from the optimization and computer science point of view.

The computational prospects of processes taking place in

protozoan cell after conjugation were discussed in [13]. The

sole optimization model based on protozoa known to the

authors was introduced in 2012 by McCaffrey [14]. The Sim-

ulated Protozoa Optimization (SPO) is a self-adapting multi-

agent optimization algorithm in which a population of agents

finds optimal or sub-optimal solutions to given problem. The

agents in SPO have position, velocity, and genotype (agent-

specific control parameters). Simulated motility is a form of

local search with random perturbations (agent moves in the

direction of the best gradient in the neighborhood but can

make a random error). The population of SPO agents has

constant size. The fission is implemented by generating a

copy of individual agent that can replace less fit agents in

the population. Old agents die and are replaced by randomly

generated individuals.

Conjugation is in SPO used to adapt control parameters

of interacting agents. The level of environmental stress that

triggers conjugation is expressed using agents current fitness

and global best and global worst fitness of the population.

Partners for conjugation are selected based on the closeness

(similarity) of the agents.

The study [14] has compared the performance of SPO with

PSO, Genetic Algorithms, and Bacteria Foraging Optimization

algorithms on a series of test functions. It was shown that SPO

performs better than other algorithms.

This study takes a different approach. The well known

mechanics of PSO is used as a basis for a new extended

PSO algorithm that is extended by protozoic behaviour. Based

on the level of environmental stress, PSO particles reproduce

either asexually by fission (with random errors) or sexually by

conjugation.

IV. PARTICLE SWARM OPTIMIZATION WITH PROTOZOIC

BEHAVIOUR

The PSO algorithm is a global population-based search and

optimization algorithm based on the simulation of swarming

behavior of birds within a flock, schools of fish and even

human social behavior [9], [1]. PSO uses a population of

motile candidate particles characterized by their position xi

and velocity vi inside the n−dimensional search space they

collectively explore. Each particle remembers the best position

(in terms of fitness function) it visited yi and knows the best

position discovered so far by the whole swarm ȳ. In each

iteration, the velocity of particle i is updated according to [1]:

vt+1
i = vti + c1r

t
1(yi − xt

i) + c2r
r
2(ȳ

t − xt
i) (1)

where c1 and c2 are positive acceleration constants and r1
and r2 are vectors of random values sampled from uniform

distribution. Vector yti represents the best position known to

particle i in iteration t and vector ȳt is the best position visited

by the swarm at time t.
The position of particle i is updated by [1]:

xt+1
i = xt

i + vt+1
i (2)

The basic (gbest) PSO according to [9], [1] is summarized

in Algorithm 1.

Algorithm 1: Summary of gbest PSO

1 Create population of M particles with random position and velocity;
2 Evaluate an objective function f ranking the particles in the population;
3 while Termination criteria not satisfied do
4 for i ∈ {1, . . . ,M} do
5 Set personal and global best position:
6 if f(xi) < f(yi) then
7 yi = xi

8 end
9 if f(xi) < f(ȳ) then

10 ȳ = xi

11 end
12 Update velocity of i by (1) and position of i by (2);
13 end
14 end

PSO is useful for dealing with problems in which the

solution can be represented as a point or surface in an

n−dimensional space. Candidate solutions (particles) are

20272027

placed in this space and provided with an initial (random)

velocity. Particles then move through the solution space and

are evaluated using some fitness function after each iteration.

Over time, particles are accelerated towards those locations in

the problem space which have better fitness values.

A. protoPSO, a PSO with protozoic behaviour

The protoPSO extends the traditional PSO algorithm in the

following way:

• each particle i knows its age A(i) and vitality V(i)
• based on its current vitality, each particle spawns off-

spring via fission (if the vitality of the particle is good)

or performs conjugation if the vitality is bad

• particles older than MAX AGE iterations are removed
from the population

• if the population size falls bellow M, particles are revived
with random age from the interval [0,MAX AGE].

Particles in the initial protoPSO population have random posi-

tion, random velocity, and random age drawn from the interval

[0,MAX AGE]. The age of each particle is incremented in

every iteration of the algorithm. The vitality of each particle

V(i) is in each iteration updated using an arbitrary function

∇V(i). The function used in this study was:

∇V(i) = (f(xt−1
i)− f(xi)

) · iteration (3)

where xt−1
i is the previous position of particle i and iteration

is the sequential number of current iteration. Particles with

good vitality (i.e. V(i) > 0) get the chance to produce offspring

particles by fission. Fission frequency of the real protozoa

depends not only on the amount of food but also on the age of

the cell. This is achieved in protoPSO by allowing the fission

only to particles for which holds that iteration modulo A(i)
is equal to 0. That means that older particles spawn offspring

less frequently than young particles. Offspring particle inherits

velocity and position from its parent with 20% chance of

random modification:

vo(j) =

{
vi(j) if (rand(1) > 0.8)

vi(j) · rand(1) otherwise
(4)

xo(j) =

{
xi(j) if (rand(1) > 0.8)

xi(j) · rand(1) otherwise
(5)

for all j ∈ {0, 1, . . . , n}. In the previous, n is the dimension

of problem space, vo(j) is the j−th velocity coordinate of

the offspring particle, xo(j) is the j−th position coordinate

of the offspring particle, vi(j) is the j−th velocity coordinate

of parent particle, xi(j) is the j−th position coordinate of

parent particle, and rand(1) is uniform random number from

the range [0, 1]. The age of offspring particle A(o) is defined

as a function of particle fitness so that good particles produce

longer living offspring particles. In this study was used A(o)
defined by:

A(o) = min(f(xi),MAX AGE) (6)

Conjugation of i creates in protoPSO two new particles

(exconjugants) by a recombination of two parent particles

(conjugants). Second parent p is selected randomly and the

velocity and position of the exconjugants is defined by:

ve1 = ve2 = vi + rand(1) · (vi − vp) (7)

(xe1, xe2) = xi ⊗ xp (8)

where ⊗ is single point crossover of position vectors. The age

of both exconjugants is set 0 (i.e. conjugation increases the

lifespan of particles) and the exconjugants immediately replace

their parents in the population.

The summary of protoPSO is shown in Algorithm 2.

Algorithm 2: Summary of protoPSO

1 Create population of M particles with random position, velocity, and age;
2 Evaluate an objective function f ranking the particles in the population;
3 while Termination criteria not satisfied do
4 for i ∈ {1, . . . ,M} do
5 Set personal and global best position:
6 if f(xi) < f(yi) then
7 yi = xi

8 end
9 if f(xi) < f(ȳ) then

10 ȳ = xi

11 end
12 Update velocity of i by (1) and position of i by (2);
13 A(i) ++;
14 V(i) += ∇V(i);
15 if V(i) > 0 then
16 fission(i);
17 else
18 conjugation(i);
19 end
20 if A(i) > MAX AGE then
21 remove(i);
22 end
23 end
24 if ACTIV E PARTICLES < M then
25 revive();
26 end
27 end

V. EXPERIMENTS

A series of computational experiments was conducted in

order to verify the usefulness of PSO with protozoic behaviour.

A. Test problem

Several well known and widely used real-parameter opti-

mization test functions [15] were selected as test problems. The

functions were used because they are popular test problems

with high computational requirements and known optima. The

test functions used in this study are summarized in table I. PSO

and protoPSO were used to search for optima of test functions

with dimension n = 20. The search was terminated after each

algorithm performed 1e6 fitness function evaluations.

f1(x) = −20 · exp
⎛
⎝−0.2

√√√√ 1

n
·

n∑
i=1

x2
i

⎞
⎠

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e (9)

20282028

Test function

Algorithm f1 f2 f3 f4 f5 f6

PSO 6.96E-015 2.49E-187 1.34E-185 22.1544 5.44268 1731.38
protoPSO 4.00E-015 5.84E-102 5.59E-093 0 2.61463 1125.16

TABLE II: Average results of PSO and protoPSO after 1e6 fitness function evaluations (lower is better).

Function Name Equation Parameter range

f1 Ackley (9) [-30, 30]
f2 De Jong (10) [-5.12, 5.12]
f3 Griewank (11) [-600, 600]
f4 Rastrigin (12) [-5.12, 5.12]
f5 Rosenbrock (13) [-30, 30]
f6 Schwefel (14) [-500, 500]

TABLE I: Test functions.

where n is problem dimension, x = (x1, . . . , xn) is parameter
vector, e ≈ 2.71828 is Euler’s number, and exp(a) = ea is
exponential function.

f2(x) =
n∑

i=1

x2
i (10)

f3(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
(11)

f4(x) = 10 · n+
n∑

i=1

(
x2
i − 10 · cos(2πxi)

)
(12)

f5(x) =

n−1∑
i=1

(
100 · (xi+1 − x2

i)
2 + (1− xi)

2
)

(13)

f6(x) =

n∑
i=1

−x2
i · sin(

√
|xi|) (14)

B. Experiment settings

PSO and protoPSO were executed with the the same shared

parameters: inertia weight was set to 0.729, cognitive weight

and social weight was set to 1.49445 and population size was

set to 100. The Mersenne Twister [16] algorithm initialized

with current system time was used as pseudo-random number

generator. The maximum age of protoPSO particles was set to

10. The execution of both PSO and protoPSO was terminated

after 1000000 fitness function evaluations. Beacuse of the

stochastic nature of the algorithms, 30 independent runs were

performed and presented results are averages from the 30 runs.

C. Experiment results

The comparison of the results obtained by PSO and

protoPSO is shown in table II. It can be seen that protoPSO

has found better average solutions than traditional PSO for 4

out of 6 test functions. The solutions for Rastrigin, Rosenbrock,

and Schwefel function obtained by protoPSO were signif-

icantly better than those found by PSO while the solutions

for Ackley, Griewank, and De Jong function were comparable

or slightly worse. The results suggest that the optimization

strategies inspired by protozoa might be a helpful approach to

some problems.

VI. CONCLUSIONS AND FUTURE WORK

This work proposed and evaluated a new variant of PSO en-

hanced with behaviour inspired by protozoa named protoPSO.

The algorithm combines the proven PSO-based optimization

strategies (collective movement of a swarm of particles with

local and social search) with innovative concepts implementing

protozoic behaviour such as cellular fission, conjugation, and

ageing. The algorithm was evaluated on a set of test functions.

The computational experiments have shown that protoPSO

delivered better solutions for 4 out of 6 test functions. This

is an encouraging result suggesting that protozoic behaviour

and optimization strategies can improve the performance and

results of existing nature-inspired optimization algorithms.

However, the fact that protoPSO was able to find better results

than the traditional PSO only for some test functions indicates

that nature-inspired algorithms with protozoic behaviour are

subject of the no free lunch theorem [4].

Future work on this topic will include the implementation

of protozoic behaviour for more nature-inspired algorithms

and their evaluation. Next, the relation between fission, con-

jugation, and ageing and exploration/exploitation tendencies

in nature-inspired algorithms will be investigated and nature-

inspired algorithms with protozoic behaviour will be compared

to advanced self-adaptive variants of themselves. Finally, a

new nature-inspired algorithm mimicking closely the complex

behaviour and survival strategies of protozoa will be designed

and evaluated.

ACKNOWLEDGEMENT

This work was supported by the European Regional

Development Fund in the IT4Innovations Centre of Ex-

cellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-

Inspired Methods: research, development and knowledge trans-

fer project, reg. no. CZ.1.07/2.3.00/20.0073 funded by Opera-

tional Programme Education for Competitiveness, co-financed

by ESF and state budget of the Czech Republic. This work was

also partially supported by the Grant of SGS No. SP2013/70,

VŠB - Technical University of Ostrava, Czech Republic.

REFERENCES

[1] A. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edi-
tion. New York, NY, USA: Wiley, 2007.

20292029

[2] A. Mehrabian and C. Lucas, “A novel numerical optimization algorithm
inspired from weed colonization,” Ecological Informatics, vol. 1, no. 4,
pp. 355 – 366, 2006.

[3] Z. W. Geem, J.-H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: Harmony search,” Simulation, vol. 76, no. 2,
pp. 60–68, 2001.

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Evolutionary Computation, IEEE Transactions on, vol. 1,
pp. 67–82, August 2002.

[5] I. Alcamo and J. Warner, Schaum’s Outline of Microbiology 2/e (e-book).
Schaum’s Outline Series, McGraw-Hill Education, 2009.

[6] G. Bell, Sex and Death in Protozoa: The History of Obsession. Cam-
bridge University Press, 1988.

[7] I. Bruchhaus, T. Roeder, A. Rennenberg, and V. T. Heussler, “Protozoan
parasites: programmed cell death as a mechanism of parasitism,” Trends
in Parasitology, vol. 23, no. 8, pp. 376 – 383, 2007.

[8] M. A. Fuertes, P. A. Nguewa, J. Castilla, C. Alonso, and J. M.
Pérez Martı́n, “Programmed cell death in protozoa: An evolutionary
point of view. the example of kinetoplastid parasites,” in Programmed
Cell Death in Protozoa, Molecular Biology Intelligence Unit, pp. 1–6,
Springer New York, 2008.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,
pp. 1942–1948 vol.4, 1995.

[10] “Protozoan,” Encyclopædia Britannica. Encyclopæ-
dia Britannica Online., 2013. Available from
http://www.britannica.com/EBchecked/topic/480488/protozoan,
Accessed 14 May. 2013.

[11] “Microbiology,” Encyclopædia Britannica. Encyclopædia Britannica
Online., 2013. Available from http://www.britannica.com/
EBchecked/topic/380246/microbiology/216166/Fungi, Accessed 14
May. 2013.

[12] D. Montagnes, E. Roberts, J. Luke, and C. Lowe, “The rise of model
protozoa,” Trends in Microbiology, vol. 20, no. 4, pp. 184 – 191, 2012.

[13] M. Daley, “On the processing power of protozoa,” in Logic and Theory
of Algorithms (A. Beckmann, C. Dimitracopoulos, and B. Löwe, eds.),
vol. 5028 of Lecture Notes in Computer Science, pp. 152–153, Springer
Berlin Heidelberg, 2008.

[14] J. McCaffrey, “Simulated protozoa optimization,” in Information Reuse
and Integration (IRI), 2012 IEEE 13th International Conference on,
pp. 179–184, 2012.

[15] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 Special Session on Real Parameter Optimization,” tech. rep.,
Nanyang Technological University, 2005.

[16] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, pp. 3–30, Jan. 1998.

20302030

