
A SYNERGY OF DIFFERENTIAL

EVOLUTION AND BACTERIAL FORAGING

OPTIMIZATION FOR GLOBAL

OPTIMIZATION

Arijit Biswas, Sambarta Dasgupta, Swagatam Das∗, Ajith Abraham†

Abstract: The social foraging behavior of Escherichia coli bacteria has recently
been studied by several researchers to develop a new algorithm for distributed op-
timization control. The Bacterial Foraging Optimization Algorithm (BFOA), as
it is called now, has many features analogous to classical Evolutionary Algorithms
(EA). Passino [1] pointed out that the foraging algorithms can be integrated in the
framework of evolutionary algorithms. In this way BFOA can be used to model
some key survival activities of the population, which is evolving. This article pro-
poses a hybridization of BFOA with another very popular optimization technique
of current interest called Differential Evolution (DE). The computational chemo-
taxis of BFOA, which may also be viewed as a stochastic gradient search, has been
coupled with DE type mutation and crossing over of the optimization agents. This
leads to the new hybrid algorithm, which has been shown to overcome the problems
of slow and premature convergence of both the classical DE and BFOA over several
benchmark functions as well as real world optimization problems.

Key words: Bacterial foraging, hybrid optimization, differential evolution,
genetic algorithm, and radar poly-phase code design

Received: November 26, 2007
Revised and accepted: December 15, 2007

1. Introduction

Foraging can be modeled as an optimization process where an animal seeks to
maximize energy per unit time spent for foraging. This view led Passino et al.
to formulate a new bio-inspired algorithm for distributed search and optimiza-
tion, which they named Bacteria Foraging Optimization Algorithm (BFOA) [1,

∗Arijit Biswas, Sambarta Dasgupta, Swagatam Das
Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, In-
dia, E-mail: arijitbiswas87@gmail.com, sambartadg@gmail.com, swagatamdas19@yahoo.co.in

†Ajith Abraham
Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and
Technology, Trondheim, Norway, E-mail: ajith.abraham@ieee.org

c©ICS AS CR 2007 607

Neural Network World 6/07, 607-626

2]. Although the algorithm is no way equivalent to a conventional Evolutionary
Algorithm (EA) [3, 4] both the paradigms that mean BFOA and EA have many
analogous features. The reader who is familiar with both this algorithms may
easily perceive the algorithmic resemblance between the fitness function and nu-
trient concentration function, selection and bacterial reproduction, mutation and
elimination-dispersal. Hence it is more expected that the EA and BFOA may re-
inforce each other if integrated as a single hybrid evolutionary algorithm. One of
the main driving forces of the BFOA is the computational chemotaxis which ac-
tually entails a kind of stochastic gradient search (where only an approximation
of gradient is used and not the analytical gradient information). In the present
article this feature of BFOA has been integrated into the framework of the Dif-
ferential Evolution (DE) [5, 6] algorithm. The DE is a simple Genetic Algorithm
(GA) [7, 8], which applies a differential mutation operator that distinguishes it
from the traditional GA. It has repeatedly outperformed many types of EA’s and
other meta-heuristics like Particle Swarm Optimization (PSO) when tested over
both benchmark and real world problems. DE is, however, not free from problems
of slow and premature convergence. Similarly experimentation with several bench-
mark functions reveals that the BFOA also possesses a poor convergence behavior
over multimodal and rough fitness landscapes. Until date there have been a few
successful applications of the said algorithm in optimal control engineering, har-
monic estimation [9], transmission loss reduction [10], machine learning [11] and
active power filter design [12] but hardly any research effort has been undertaken
to improve the basic optimizing capabilities of the BFOA. Kim et al. proposed a
hybrid approach involving the GA and BFOA for numerical optimization [13].

The main objective of this work is to illustrate that the integration of some fea-
tures from both the DE and the BFOA can prove very effective in tackling many
nearly intractable optimization problems on which both the classical algorithms
perform poorly. The proposed algorithm referred to here as Chemotactic Differ-
ential Evolution (CDE) has been extensively compared with two state of the art
variants of DE, the classical BFOA and BFOA–GA hybrid. Since the chemotaxis
used in the CDE deviates from the classical form, we compare the CDE also with
the BFOA equipped with adaptive chemotactic step. Such comparisons over test
bed of six well-known numerical benchmark functions and a real-world problem of
spread-spectrum radar poly-phase code design, illustrate the effectiveness of the
proposed algorithm.

The rest of the paper is organized in the following way. In Section 2 we briefly
review both the BFOA and the DE and point out the motivation for the incorpo-
ration of computational chemotaxis in the DE. Section 3 describes the proposed
hybrid optimization algorithm in sufficient details. Section 4 describes the exper-
imental set-up and simulation strategies. Numerical results have been presented
and discussed in Section 5. Finally, future research directions are provided and
conclusions are drawn in Section 6.

2. Brief Overview of BFOA and DE

In this section we briefly outline both the BFOA and the DE algorithms.

608

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

2.1 The differential evolution algorithm

Like any other evolutionary algorithm, the DE also starts with a population of NP
D-dimensional parameter vectors. We will represent subsequent generations in the
DE by discrete time steps like t = 0, 1, 2 . . . t, t + 1 etc. Since the vectors are likely
to be changed over different generations we may adopt the following notation for
representing the i-th vector of the population at the current generation (i.e., at
time t = t) as:

~Xi(t) = [xi,1(t), xi,2(t), xi,3(t).....xi,D(t)]. (1)

For each parameter of the problem, there may be a certain range within which
value of the parameter should lie for better search results. At the very beginning
of a DE run or at t = 0, problem parameters or independent variables are initialized
somewhere in their feasible numerical range. So, if the j-th parameter of the given
problem has its lower and upper bound as xmin,j and xmax,j respectively, then we
may initialize the j-th component of the i-th population members as

xi,j(0) = xmin,j + randj(0, 1).(xmax,j − xmin,j), (2)

where randj(0, 1) is the j-th instantiation of a uniformly distributed random num-
ber lying between 0 and 1. The following steps are taken next.

2.1.1 Mutation

After initialization, the DE creates a donor vector ~Vi(t) corresponding to each
population member or target vector ~Xi(t) in the current generation through mu-
tation. It is the method of creating this donor vector, which demarcates be-
tween the various DE schemes. For example, five most frequently referred mu-
tation strategies implemented in the public-domain DE codes available online at
http://www.icsi.berkeley.edu/∼storn/code.html are listed as follows:

“DE/rand/1”:~Vi(t) = ~Xri
1
(t) + F.(~Xri

2
(t)− ~Xri

3
(t)) (3a)

“DE/best/1”:~Vi(t) = ~Xbest(t) + F.(~Xri
1
(t)− ~Xri

2
(t)) (3b)

“DE/target-to-best/1”:
~Vi(t) = ~Xi(t) + F.(~Xbest(t)− ~Xi(t)) + F.(~Xri

1
(t)− ~Xri

2
(t)) (3c)

“DE/best/2”:~Vi(t) = ~Xbest(t) + F.(~Xri
1
(t)− ~Xri

2
(t)) + F.(~Xri

3
(t)− ~Xri

4
(t))
(3d)

“DE/rand/2”:~Vi(t) = ~Xri
1
(t) + F.(~Xri

2
(t)− ~Xri

3
(t)) + F.(~Xri

4
(t)− ~Xri

5
(t))

(3e)

The indices ri
1, r

i
2, r

i
3, r

i
4 and ri

5 are mutually exclusive integers randomly chosen
from range [1, NP], which are also different from index i. These indices are ran-
domly generated once for each mutant vector. The scaling factor F is a positive

609

Neural Network World 6/07, 607-626

control parameter for scaling the difference vectors. ~Xbest,G is the best individual
vector with the best fitness function value in the population at generation G. The
general convention used for naming the various mutation strategies is DE/x/y/z,
where DE stands for the Differential Evolution, x represents a string denoting the
vector to be perturbed and y is the number of difference vectors considered for
perturbation of x.z stands for the type of crossover being used (exp: exponential;
bin: binomial). The following section discusses the crossover step in the DE.

2.1.2 Crossover

Next, to increase the potential diversity of the population a crossover scheme is
undertaken. The DE family of algorithms can use two kinds of cross over schemes,
namely exponential and binomial. The donor vector exchanges its “body parts”,
i.e., components with the target vector ~Xi(t) under this scheme to form the trial
vector ~Ui(t). We here outline the binomial crossover scheme, which comes into
play in our present analysis. In this case the crossover is performed on each of the
D variables whenever a randomly picked number between 0 and 1 is within the
CR value. In this case the number of parameters inherited from the mutant has a
(nearly) binomial distribution. The scheme may be outlined as

ui,j(t) = vi,j(t) If (randi(0, 1) ≤ CR) or (j = rn(i))
xi,j(t) If (randi(0, 1) > CR) or (j 6= rn(i)) (4)

where randj(0, 1) ∈ [0, 1] is the j-th evaluation of a uniform random number gener-
ator. rn(i) ∈ [1, 2, . . . , D] is a randomly chosen index which ensures that ~Ui(t) gets
at least one component from ~Vi(t). It is instantiated once for each vector. In this
article we have not taken into account the term rn(i) so that CR may be exactly
equal to the cross-over probability pCr.

2.1.3 Selection

In this way for each target vector ~Xi(t) a trial vector ~Ui(t) is created. To keep the
population size constant over subsequent generations, the next step of the algorithm
calls for ‘selection’ to determine which one of the target and the trial vector will
survive in the next generation, i.e., at time t = t + 1. The DE actually involves the
Darwinian principle of “Survival of the fittest” in its selection process, which may
be outlined as,

~Xi(t + 1) =

{
~Ui(t) if f(~Ui(t)) ≤ f(~Xi(t))

~Xi(t) if f(~Ui(t)) > f(~Xi(t))
(5)

where f is the function to be minimized. So if the new trial vector yields a better
value of the fitness function, it replaces its parent in the next generation; otherwise
the parent is retained in the population. Hence the population either gets better
(w.r.t the fitness function) or remains constant but never deteriorates.

610

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

2.2 The bacterial foraging optimization algorithm (BFOA)

The bacterial swarm proceeds through four principal mechanisms namely chemo-
taxis, swarming, reproduction and elimination-dispersal. Below we briefly describe
each of these processes and finally provide a pseudo-code of the entire algorithm.

i) Chemotaxis: This process simulates the movement of an E.coli cell through
swimming and tumbling via flagella. Biologically an E.coli bacterium can
move in two different ways. It can swim for a period of time in the same
direction or it may tumble, and alternate between these two modes of oper-
ation for the entire lifetime. Suppose θi(j, k, l) represents i-th bacterium at
j-th chemotactic, k-th reproductive and l-th elimination dispersal step. C(i)
is the size of the step taken in the random direction specified by the tumble
(run length unit). Then in computational chemotaxis the movement of the
bacterium may be represented by

θi(j + 1, k, l) = θi(j, k, l) + C(i)
∆(i)√

∆T (i)∆(i)
, (6)

where ∆ indicates a unit length vector in the random direction.

ii) Swarming: An interesting group behavior has been observed for several
motile species of bacteria including E.coli and S. typhimurium, where stable
spatio-temporal patterns (swarms) are formed in semisolid nutrient medium.
A group of E.coli cells arrange themselve in a traveling ring by moving up
the nutrient gradient when placed amidst a semisolid matrix with a single
nutrient chemo-effecter. The cells when stimulated by high level of succinate
release an attractant aspertate, which helps them to aggregate into groups
and thus move as concentric patterns of swarms of high bacterial density. The
cell to cell, signaling in E.coli swarm may be represented with the following
function.

Jcc(θi(j, k, l)) =
s∑

i=1

[−dattrac tan t exp(−wattrac tan t

p∑
m=1

(θm − θi
m)2)]+

+
s∑

i=1

[hrepellant exp(−wrepellant

p∑
m=1

(θm − θi
m)2)] (7)

where θ = [θ1,θ2,.........,θD]T is a point in the D-dimensional search domain.

iii) Reproduction: The least healthy bacteria eventually die while each of the
healthier bacteria (those yielding higher value of fitness function) asexually
split into two bacteria which are placed in the same location. This keeps the
swarm size constant.

iv) Elimination and dispersal: Gradual or sudden changes in the local envi-
ronment where a bacterium population lives may occur due to various reasons,
e.g. a significant local rise of temperature may kill a group of bacteria that are

611

Neural Network World 6/07, 607-626

currently in a region with a high concentration of nutrient gradients. Events
can take place in such a fashion that all the bacteria in a region are killed or
a group is dispersed into a new location. To simulate this phenomenon in the
BFOA some bacteria are liquidated at random with a very small probability
while the new replacements are randomly initialized over the search space.

The pseudo-code of the complete algorithm has been provided below:

The BFOA Algorithm
Parameters:

[Step 1] Initialize parameters n,N,NC , NS , Nre, Ned, Ped, C(i)(i = 1, 2. . .N), θi.
Where,

n: Dimension of the search space,
N : the number of bacteria in the population,

NC : chemotactic steps,
Nre: the number of reproduction steps,
Ned: the number of elimination-dispersal events,
Ped: elimination-dispersal with probability,

C(i): the size of the step taken in the random direction specified by the tumble.

Algorithm:

[Step 2] Elimination-dispersal loop: l = l + 1

[Step 3] Reproduction loop: k = k + 1

[Step 4] Chemotaxis loop: j = j + 1

[a] For i = 1, 2. . .N, take a chemotactic step for bacterium i as follows.

[b] Compute fitness function, J (i, j, k, l).

Let, J(i, j, k, l) = J(i, j, k, l)+Jcc(θi(j, k, l), P (j, k, l)) (i.e., add on the cell-to
cell attractant–repellant profile to simulate the swarming behavior) where Jcc

is defined in (2).

[c] Let Jlast = J(i, j, k, l) to save this value since we may find a better cost
via a run.

[d] Tumble: generate a random vector ∆(i) ∈ Rn with each element ∆m(i),
m = 1, 2, . . . , p, a random number on [−1, 1].

[e] Move: Let

θ(i + 1, j, k) = θ(i, j, k) + C(i)
∆(i)√

∆T (i)∆(i)

This results in a step of size C(i) in the direction of the tumble for bacterium
i.

[f] Compute J(i, j+1, k, l) and let J(i, j, k, l) = J(i, j, k, l)+Jcc(θi(j, k, l), P (j, k, l)).

612

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

[g] Swim

i) Let m = 0 (counter for swim length).

ii) While m < Ns (if have not climbed down too long).

∗ Let m = m + 1.

∗ If J(i, j + 1, k, l) < Jlast (if doing better), let Jlast = J(i, j + 1, k, l)
and let

θ(i + 1, j, k) = θ(i + 1, j, k) + C(i)
∆(i)√

∆T (i)∆(i)

and use this θ(i + 1, j, k) to compute the new J(i, j + 1, k, l)as we
did in [f]

∗ Else, let m=Ns. This is the end of the while statement.

[h] Go to next bacterium (i+1) if i 6= N (i.e., go to [b] to process the next
bacterium).

[Step 5] If j < NC , go to step 3. In this case, continue chemotaxis, since the life
of the bacteria is not over.

[Step 6] Reproduction:

[a] For the given k and l, and for each i = 1, 2, . . . , N, let

J i
health =

Nc+1∑

j=1

J(i, j, k, l)

be the health of bacterium i (a measure of how many nutrients it got over
its lifetime and how successful it was at avoiding noxious substances). Sort
bacteria and chemotactic parameters C(i) in order of ascending cost Jhealth

(higher cost means lower health).

[b] The Sr bacteria with the highest Jhealth values die and the remaining Sr

bacteria with the best values split (this process is performed by the copies
that are made and placed at the same location as their parent).

[Step 7] If k < Nre, go to [step 3]. In this case, we have not reached the number
of specified reproduction steps, so we start the next generation of the chemotactic
loop.

[Step 8] Elimination-dispersal: For i = 1, 2, . . . , N, with probability Ped, eliminate
and disperse each bacterium, and this result in keeping the number of bacteria in
the population constant. To do this, if a bacterium is eliminated, simply disperse
one to a random location on the optimization domain. If l < Ned, then go to [step
2]; otherwise end.

613

Neural Network World 6/07, 607-626

3. The Hybrid Algorithm

The DE has reportedly outperformed powerful meta-heuristics like genetic algo-
rithm (GA) and particle swarm optimization (PSO) [14]. Practical experiences
suggest that the DE may occasionally stop proceeding towards the global optima,
while the population has not converged to a local optima or any other point. Oc-
casionally even new individuals may enter the population but the algorithm does
not progress by finding any better solutions. This situation is usually referred to
as stagnation. The DE also suffers from the problem of premature convergence
[15] where the population converges to some local optima of a multimodal objec-
tive function loosing its diversity. On the other hand, experiments with several
benchmark functions reveal that the BFOA possesses a poor convergence behavior
over multimodal and rough fitness landscapes as compared to other bio-inspired
optimization techniques like GA, PSO etc. [16]. Its performance is heavily af-
fected with the growth of search space dimensionality. Previously to improve the
performance of the DE, some attempts have been made to hybridize it with a few
local search techniques, e.g. [17] and meta-heuristics like PSO [18]. Recently in
2007 Kim et al. developed a hybrid approach involving the GA and the BFOA for
function optimization [13]. Their algorithm outperformed both the GA and the
BFOA over several numerical benchmarks and a practical PID tuner design prob-
lem. In the present work following the same train of thought, we have incorporated
an adaptive chemotactic step borrowed from the realm of the BFOA into the DE.
The computational chemotaxis in the BFOA serves as a stochastic gradient descent
based local search. It was seen to greatly improvise the convergence characteristics
of the classical DE. The resulting hybrid algorithm is referred here as the CDE
(Chemotactic Differential Evolution).

In the CDE, each trial solution vector first undergoes an adaptive computa-
tional chemotaxis. The trial solution is visualized as an E.coli bacterium. During
the process of chemotaxis, bacterium in proximity of venomous substance takes
larger chemotactic step to move towards the nutrient substances. Before each
movement, it is ensured that bacterium moves in the direction of increasing nu-
trient substance concentration, i.e., region with smaller objective function value.
After this, it is subjected to the DE mutation. For the trial solution vector in
population three vectors, other than the previous one, are selected. One of the
three vectors is added with scaled difference of the remaining two. The vector
thus produced probabilistically interchanges its components with the original vec-
tor (just like genes of two chromosomes). Offspring vector replaces the original
one if the objective function value is smaller for it. The process is repeated several
times over the entire population in order to obtain the optimal solution. The brief
pseudo-code of the algorithm has been provided below:

The CDE (Chemotactic DE) Algorithm

Initialize parameters S, NC , , NS,, C(i)(i=1,2. . .N), F, CR.
Where,

S: The number of bacteria in the population,
D: dimension,

614

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

NC : no. of chemotactic steps,
C(i) : the size of the step taken in the random direction specified by the tumble.

F : scale factor for DE type mutation
CR: crossover Rate.

Set j = 0, t = 0;
Chemotaxis loop: j = j + 1;
Differential evolution mutation loop: t = t + 1;
θ(i, j, t) denotes the position of the i-th bacterium in the j-th chemotactic and

t-th differential evolution loop.
for i = 1, 2, . . . , S, a chemotactic step is taken for i-th bacterium.

(a) Chemotaxis loop:

(i) Value of the objective function J(i, j, t) is computed where J(i, j, t) symbol-
izes value of objective function at j-th chemotaxis cycle for i-th bacterium at
t-th DE mutation step.

(ii) Jlast = J(i, j, t) we store this value of objective function for comparison with
values of an objective function yet to be obtained in future.

(iii) Tumble: generate a random vector ∆(i) ∈ <D with each element

∆m(i),m = 1, 2, . . . , D is a random number on [−1, 1].

(iv) Move: θ(i, j + 1, t) = ω.θ(i, j, t) + C(i).(∆(i)/
√

∆(i).∆T (i)).

Where ω = inertia factor which is generally equals to 1 but becomes 0.8

if the function has an optimal value close to 0.

C(i) = step size for k-th bacterium = ((J(i, j, t))1/3−20)/((J(i, j, t))1/3+300)

Step size is made an increasing function of objective function value to have
a feedback arrangement.

(v) J(i, j, t) is computed.

(vi) Swim: We consider here only i-th bacterium is moving and others are not
moving.

Now let m = 0;
while m < Ns (no of steps less than max limit).
Let m = m + 1;
If J(i, j, t) < Jlast (if going better)

Jlast = J(i, j, t).

And let, θ(i, j + 1, t) = ω.θ(i, j, t) + C(i).(∆(i)/
√

∆(i).∆T (i)).
Else, m = Ns (end of while loop);
for i = 1, 2, , S, a differential evolution mutation step is taken for i-th bacterium.

615

Neural Network World 6/07, 607-626

(b) Differential evolution mutation loop:

(i) For each θ(i, j + 1, t) trial solution vector we choose randomly three other
distinct vectors from the current population namely θ(l), θ(m), θ(n) such that
i 6= l 6= m 6= n.

(ii) V (i, j + 1, t) = θ(l) + F.(θ(m)− θ(n)),

where, V (i, j + 1, t) is the donor vector corresponding to θ(i, j + 1, t).

(iii) Then the donor and the target vector interchange components probabilisti-
cally to yield a trial vector U(i, j + 1, t) following:

Up(i, j + 1, t) = Vp(i, j + 1, t) If (randp(0, 1) ≤ CR) or (p = rn(i))

θp(i, j + 1, t) If (randp(0, 1) > CR) or (p 6= rn(i)) for p-th dimension.

Where randp(0, 1) ∈ [0, 1] is the p-th evaluation of a uniform random number
generator. rn(i) ∈ {1, 2, . . . , D} is a randomly chosen index which ensures
that U(i, j + 1, t) gets at least one component from V (i, j + 1, t).

(iv) J(i, j + 1, t) is computed for trial vector.

(v) If J(U(i, j + 1, t)) < J(θ(i, j + 1, t)), θ(i, j + 1, t + 1) = U(i, j + 1, t).

Original vector is replaced by offspring if value of objective function for it is
smaller.

If j < Nc, start another chemotaxis loop.

4. The Experimental Setup

4.1 Benchmark functions used

The performance of the CDE algorithm has been evaluated on a test suite of six
well-known benchmarks (Tab. I) [19]. In Tab. I, D represents the number of dimen-
sions (we used n = 15, 30, 45 and 60). The first two test functions are unimodal,
having only one minimum. The others are multimodal, with a considerable number
of local minima in the region of interest. All benchmark functions except f6 have
the global minimum at the origin or very near to the origin [19]. For the Shekel’s
foxholes (f6), the global minimum is at (-31.95, -31.95) and f6(-31.95, -31.95) ≈
0.998, and the function has only two dimensions. Tab. II summarizes the initial-
ization and search ranges used for these functions. An asymmetrical initialization
procedure has been used here following the work reported in [20].

4.2 The spread spectrum radar polyphase code design
problem

A famous problem of optimal design arises in the field of spread spectrum radar
poly-phase codes [21]. Such a problem suits very well for the application of global
optimization algorithms like DE. The problem can be formally stated as:

616

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

global min f(~X) = max{ϕ1(~X), . . . , ϕ2m(~X)}
~X = {(x1, . . . , xD) ∈ <D|0 ≤ xj ≤ 2π, j = 1, . . . , D} (8)

where m = 2n− 1 and

ϕ2i−1(~X) =
D∑

j=i

cos




j∑

k=|2i−j−1|−1

xk


, i = 1, . . . , D

ϕ2i(~X) = 0.5 +
D∑

j=i+1

cos




j∑

k=|2i−j−1|−1

xk


, i = 1, . . . , D − 1

ϕm+i(~X) = −ϕi(~X), i = 1, . . . , m (9)

The work in [27] shows that the above problem is NP-hard. The objective function
for D = 2 has been shown in Fig. 1.

Fig. 1 f(~X) of (9) for D = 2.

4.3 Simulation strategy

Simulations were carried out to obtain a comparative performance analysis of the
proposed CDE method with respect to: (a) DE/rand/1/bin [6] (b) BFOA and (c)
BFOA-GA [13]. The first classical DE schemes was chosen because of its wide
popularity in solving numerical optimization or engineering problems.

617

Neural Network World 6/07, 607-626

Function Mathematical Representation

Sphere function f1(~X) =
D∑

i=1

x2
i

Rosenbrock f2(~X) =
D−1∑
i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2]

Rastrigin f3(~X) =
D∑

i=1

[x2
i − 10 cos(2πxi) + 10]

Griewank f4(~X) = 1
4000

D∑
i=1

x2
i

D∏
i=1

cos(xi√
i
) + 1

Ackley f5(~X) = −20 exp(−0.2

√(
1
D

D∑
i=1

x2
i

)
−exp

(
1
D

D∑
i=1

cos 2πxi

)
+20+e

Shekel’s Foxholes f6(~X) =


 1

500 +
25∑

j=1

1

j+
2∑

i=1
(xi−aij)6



−1

Tab. I Benchmark functions used.

For classical DE/rand/1/bin the population size NP was taken as 10 times the
dimension of the problem. To make the comparison fair, the populations for all
the considered algorithms (for all problems tested) were initialized using the same
random seeds. We choose the number of fitness evaluations (FE) as a measure of
computation time instead of ‘generations’ or ‘iterations’.

Thirty independent runs of each of the four algorithms were carried out and
the average and the standard deviation of the best-of-run values were recorded.
Different maximum number of FEs were used according to the complexity of the
problem. For all benchmarks (excluding Shekel’s Foxholes function f6) the stopping
criterion was set as reaching a fitness of 1.00e-05. However, for the Shekel’s Foxholes
function (f6) it was fixed at 0.998. The spread spectrum radar polyphase code
design problem was tested varying n from 2 to 20. However, we report results of
just two of the most difficult problem instances in each case (n = 19, 20) owing to
the space limitations.

f Global Optimum Range of search Range of Initialization
f1 f1(~0) = 0 (-100, 100)n (50, 100)n

f2 f2(~1) = 0 (-100, 100)n (15, 30)n

f3 f3(
⇀

0) = 0 (-10, 10)n (2.56, 5.12)n

f4 f4(
⇀

0) = 0 (-600, 600)n (300, 600)n

f5 f5(
⇀

0) = 0 (-32, 32)n (15, 32)n

f6
f6(−31.95,
−31.95) = 0.998 (-65.536, 65.536)2 (0, 65.536)2

Tab. II Search ranges of benchmark functions.

618

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

For the DE/rand/1/bin and CDE the cross-over rate Cr = 0.9 and the scale
factor F = λ = 0.8 were used. The parametric setup of the classical BFOA has
been shown in Tab. III. The same population size S,Nc and Ns has been used for
all the BFOA based algorithms compared here (BFOA, BFOA-GA and CDE). All
the other parameters (if not explicitly mentioned here) have been fixed according
to the best possible choice as described in relevent literature. All the algorithms
discussed here have been developed from scratch in Visual C++ on a Pentium IV,
2.3 GHz PC, with 1024 KB cache and 2 GB of main memory in Windows XP
environment.

S Nc Ns Ned ped dattract wattract wrepellant hrepellant

50 100 4 1 0.25 0.1 0.2 10 0.1

Tab. III Parameter setup for BFOA.

5. Results

The following performance measures are used for our comparative study: (a) quality
of the final solution, (b) speed of convergence towards the optimal solution, (c) suc-
cess rate (frequency of hitting the optimum), and (d) scalability of the algorithms
against the growth of problem dimensions. Tab. IV compares the algorithms on
the quality of the optimum solution. The mean and the standard deviation (within
parentheses) of the best-of-run values for 30 independent runs of each of the four
algorithms are presented. Each algorithm was run up to a predetermined maxi-
mum number of FEs (depending upon the complexity of the problem). Missing
values of standard deviation indicate a zero standard deviation. The best solution
in each case has been shown in bold.

Tab. V shows the results of unpaired t-tests between CDE and the best of the
three competing algorithms in each case (standard error of difference of the two
means, 95% confidence interval of this difference, the t value, and the two-tailed P
value). For all cases in Tab. V, sample size = 30 and degrees of freedom = 58. It
is interesting to see from Tabs. IV and V that the proposed method meets or beats
the nearest competitor in a statistically significant way.

Tab. VI shows, for all test functions and all algorithms, the number of runs
(out of 30) that managed to find the optimum solution within a given tolerance
or cutoff value. In Tab. VII we report the mean number of Function Evaluations
(FEs) and standard deviations (within parentheses) required by each competitor
algorithm to converge within the prescribed cut-off value. In each case, the mean
is calculated over the corresponding number of runs that managed to converge
within the cut-off value. The entries marked NA (Not Applicable) in this table,
imply that no run of the corresponding algorithm converged to the cut-off within
the maximum number of FEs allowed. Missing values of standard deviation here
also indicate a zero standard deviation. In Figs. 2, 3 and 4 we have graphically
presented the rate of convergence of all the methods for two most difficult test

619

Neural Network World 6/07, 607-626

functions (f2 and f3) (in 30 dimensions) and also for the spread spectrum radar
polyphase code design problem. We avoid showing plots for all the test cases in
order to save space and time. These results show that the proposed method leads
to significant improvements in most cases.

Fig. 2 The convergence characteristics of contestant algorithms over the Gener-
alised Rastrigin’s Function (f3) for D = 30.

Fig. 3 The convergence characteristics of contestant algorithms over the Gener-
alised Rosenbrock’s Function (f2) for D = 30.

620

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

Fun D
Maxm

FE
Mean Best Value
(Standard Deviation)
DE/rand/1/bin BFOA BFOA-GA CDE

f1

15 50,000 1.00e-05 6.2112e-04
(5.342e-03)

1.00e-05 1.00e-05

30 1×105 1.00e-05 9.2234e-03
(2.039e-05)

1.00e-05 1.00e-05

45 5×105 1.00e-05 2.4432e-02
(3.327e-02)

1.00e-05 1.00e-05

60 1×106 1.00e-05 7.2346e+00
(3.715e+00)

1.00e-05 1.00e-05

f2

15 50,000 1.6342e-01
(4.253e-05)

9.7691e+00
(5.209e+00)

6.7672e-01
(1.465e-01)

3.2113e-03
(4.028e-02)

30 1×105 8.8639e-01
(3.237e-05)

2.7862e+01
(9.282e-05)

8.2364e+00
(4.003e-01)

2.6752e-01
(5.746e-02)

45 5×105 5.2318e+00
(3.911e-02)

1.8232e+01
(5.243e-03)

1.8562e+01
(3.461e-01

4.4653e-02
(3.318e-03)

60 1×106 1.8704e+01
(6.282e-02)

3.5624e+00
(3.366e-03)

9.3534e+01
(4.568e-03)

9.1219e-01
(4.346e-02)

f3

15 50,000 1.00e-05 2.2352e-01
(3.029e-02)

1.00e-05 1.00e-05

30 1×105 1.00e-05 4.9382e+00
(4.732e-01)

6.7827e-05
(1.364e-08)

1.00e-05

45 5×105 6.8734e-02
(5.329e-08)

1.2038e+01
(4.917e+00)

3.4039e-03
(2.112e-08)

6.503e-03
(4.221e-02)

60 1×106 2.1935e-03
(1.186e-08)

8.7325e+01
(5.521e+00)

1.6341e-03
(6.271e-04)

8.3627e-04
(2.635e-03)

f4

15 50,000 1.00e-05 1.00e-05 1.00e-05 1.00e-05
30 1×105 1.00e-05 9.5043e-01

(4.895e-02)
2.1214e-04
(6.232e-05)

1.00e-05

45 5×105 6.4543e-03
(3.434e-06)

2.1309e+00
(7.281e-01)

1.2651e-02
(3.862e-04)

3.0071e-04
(1.832e-05)

60 1×106 8.3247e-02
(1.613e-06)

6.3298e+01
(1.217e+00)

1.3483e-01
(4.012e-02)

3.2876e-03
(1.536e-03)

f5

15 50,000 1.00e-05 4.7382e-01
(4.045e-02)

4.0936e-04
(5.992e-03)

1.00e-05

30 1×105 1.00e-05 2.1779e+00
(7.261e-03)

7.2582e-03
(5.002e-04)

1.00e-05

45 5×105 1.0084e-03
(2.923e-06)

1.8271e+01
(4.654e-02)

9.7362e-02
(7.113e-04)

1.817e-04
(1.958e-07)

60 1×106 3.6298e-02
(9.127e-04)

9.7309e+01
(1.682e-01)

3.2175e-01
(5.636e-02)

2.2627e-04
(6.347e-05)

f6 2 50,000 9.9980e-01 9.99862e-01
(5.426-04)

9.99805e-01
(4.264e-08)

9.9980e-01

Tab. IV Average and the standard deviation of the best-of-run solution for 30 runs
tested on seven benchmark functions (for all cases except f6, the cut-off value used

is 1.00e-05, while for f6 it is 0.998).

621

Neural Network World 6/07, 607-626

Fig. 4 The convergence characteristics of contestant algorithms over the radar
poly-phase code design problem (D = 20).

Fn, Dim Std. Err t 95% Conf.
Intvl

Two-tailed
P

Significance

f2, 25 0.000 21040.9635 -0.16340 to
-0.16337

< 0.0001 Extremely
significant

f2, 50 0.000 13845.0859 -0.275984 to
-0.275904

< 0.0001 Extremely
significant

f2, 75 0.007 726.4424 -5.20144 to
-5.17285

< 0.0001 Extremely
significant

f2, 100 0.001 4761.122 -2.95145 to
-2.94897

< 0.0001 Extremely
significant

f3, 75 0.000 6165.6383 -0.0000553 to
-0.00005533

< 0.0001 Extremely
Significant

f3, 100 0.000 6.9515 -0.00102 to
-0.00057

< 0.0001 Extremely
Significant

f4, 75 0.000 175.16 -0.012494 to
-0.01221

< 0.0001 Extremely
significant

f4, 100 0.007 17.958 -0.1462 to
-0.1168

< 0.0001 Extremely
significant

f5, 75 0.000 1545.6372 -0.000828 to
-0.000825

< 0.0001 Extremely
significant

f5, 100 0.000 193.0175 -0.00302 to
-0.00296

< 0.0001 Extremely
significant

Tab. V Results of unpaired t-tests on the data of Tab. IV.

622

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

Function Dim
No. of runs converging to the cut-off
DE/rand/1/bin BFOA BFOA-GA CDE

f1

15 30 0 30 30
30 30 0 30 30
45 30 0 30 30
60 30 0 30 30

f2

15 8 3 10 17
30 0 0 0 12
45 0 0 0 6
60 0 0 0 3

f3

15 30 0 30 30
30 30 0 9 30
45 14 11 15 30
60 6 5 1 30

f4

15 30 30 30 30
30 15 12 13 30
45 6 8 11 15
60 8 4 9 17

f5

15 13 15 15 30
30 12 17 11 30
45 5 8 8 19
60 2 4 4 11

f6 2 30 12 17 30

Tab. VI Number of runs converging to the cut-off fitness value for six benchmark
functions.

6. Conclusions and Future Directions

This paper has presented an improved hybrid evolutionary algorithm by combining
the DE based mutation operator with bacterial chemotaxis. The present scheme
attempts to make a judicious use of exploration and exploitation abilities of the
search space and therefore likely to avoid false and premature convergence in many
cases. The overall performance of the proposed algorithm is definitely better than
a standalone BFOA at least on the numerical benchmarks tested. The performance
also appears to be at least comparable with the classical DE/rand/1/bin scheme.
The future research effort should focus on reducing the number of user-defined
parameters for the BFOA and its variants. Also an empirical study on the effects
of these parameters on the convergence behavior of the hybrid algorithms may be
worthy to undertake.

623

Neural Network World 6/07, 607-626

Function Dim
Mean and Std Dev of FEs required to reach the
Cut-off value
DE/rand/1/bin BFOA BFOA-GA CDE

f1

15 8682.05
(11.725)

NA 8836.90
(120.287)

5232.85
(43.232)

30 22193. 00
(3.961)

NA 26373. 50
(90.873)

19282. 30
(29.732)

45 45092.45
(291.49)

NA 38274.75
(176.32)

34789.73
(27.632)

60 989173.65
(23.88)

NA 938633.6
(183.98)

581921.50
(73.818)

f2

15 7621.125
(24.821)

8915.35
(4.122)

8372.30
(51.876)

6832.29
(12.342)

30 NA NA NA 15628.83
(43.932)

45 NA NA NA 33515.33
(113.432)

60 NA NA NA 641234.67
(37.69)

f3

15 34884.45
(4.841)

46828.05
(5.583)

39522.30
(26.145)

35775.75
(14.858)

30 67124.05
(34.991)

95614.95
(45. 526)

42313.67
(112.622)

34322.15
(53.232)

45 416454.67
(7.806)

349772.57
(56.92)

263222.00
(154.34)

395144.72
(34.95)

60 892452.50
(15.00)

752754.40
(4.975)

749991 702321.43
(56.53)

f4

15 8725.55 (4.806) 12365.75
(7.039)

7973.25
(26.207)

4875.15
(15.232)

30 17934.85
(18.910)

27568.33
(12.876)

12564.30
(62.863)

9382.36
(3.982)

45 409281.33
(30.663)

447328.15
(35.723)

381305.67
(83.58)

302615.13
(22.637)

60 726121.59
(143.65)

837261.25
(3326.78)

962311..35
(31.74)

809182.00
(18.753)

f5

15 37261.67
(9.57)

45930.57
(30.56)

21905.00
(28.48)

60720.50
(19.547)

30 62918.57
(22.546)

90382
(32.822)

87483.46
(56.465)

56483.05
(22.849)

45 267211.25
(7.558)

389222.40
(29.804)

169023.66
(137.632)

56472.45
(32.118)

60 890332.50
(13.540)

990321.25
(21.525)

680491.25
(230.327)

502317.25
(42.238)

f6 2 16472.85
(24.242)

27502.40
(14.803)

18291.86
(23.238)

12237.60
(9.851)

Tab. VII Mean no. of FEs and standard deviation required to converge to the
cut-off fitness over the successful runs.

624

Arijit Biswas et al.: A synergy of differential evolution and bacterial. . .

D
Mean best-of-run solution (Std Dev)

DE/rand/1/bin BFOA BFOA-GA CDE
19 7.4849e-01

(8.93e-05)
7.5745e-01
(6.83e-02)

7.5543e-01
(3.32e-02)

7.4431e-01
(6.89e-03)

20 9.5746e-01
(4.23e-03)

9.1932e-01
(4.69e-02)

8.4932e-01
(5.72e-02)

8.0844e-01
(7.93e-03)

Tab. VIII Average and the standard deviation of the best-of-run solution for 30
runs for spread spectrum radar poly-phase code design problem (number of dimen-
sions D = 19 and D = 20). For all cases each algorithm was run for 100,000 FEs.

D Std. Err t 95% Conf. Intvl Two-tailed P Significance
19 0.002 2.5024 -0.00734 to

-0.00081
0.0152 Significant

20 0.010 3.5880 -0.05792 to
-0.01644

0.0007 Extremely
significant

Tab. IX Results of unpaired t-tests on the data of Tab. VII.

D Cut off Value
Mean No. of FE required to reach the cut-off value
DE/rand/1 BFOA BFOA-GA CDE
/bin

19 7.60e-01 78378.50 89129.15 75361.30 71876.60
20 9.10e-01 57973.60 88932.85 67654.50 63131.30

Tab. X Average no of FEs (for 30 runs) and standard deviations for spread spec-
trum radar poly-phase code design problem to converge to a given cut-off value

of the objective function.

References

[1] Passino K. M.: Biomimicry of Bacterial Foraging for Distributed Optimization and Control,
IEEE Control Systems Magazine, 2002, pp. 52-67.

[2] Liu Y., Passino K. M.: Biomimicry of Social Foraging Bacteria for Distributed Optimiza-
tion: Models, Principles, and Emergent Behaviors, Journal of Optimization Theory And
Applications: 115, 3, December 2002, pp. 603–628.

[3] Back T., Fogel D. B., Michalewicz, Z.: Handbook of Evolutionary Computation, IOP and
Oxford University Press, Bristol, UK, 1997.

[4] Fogel D. B.: Evolutionary Computation, IEEE Press, Piscataway, NJ, 1995.

[5] Storn R., Price K.: Differential evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Journal of Global Optimization, 11, 4, 1997, pp.
341–359.

[6] Price K., Storn R., Lampinen J.: Differential Evolution – A Practical Approach to Global
Optimization, Springer, ISBN: 3-540-20950-6, 2005.

625

Neural Network World 6/07, 607-626

[7] Holland J. H.: Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor, 1975.

[8] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

[9] Mishra S.: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation.
IEEE Trans. on Evolutionary Computation, 9, 1, 2005, pp. 61-73.

[10] Tripathy M., Mishra S., Lai L. L., Zhang Q. P.: Transmission Loss Reduction Based on
FACTS and Bacteria Foraging Algorithm. PPSN, 2006, pp. 222-231.

[11] Kim D. H., Cho C. H.: Bacterial Foraging Based Neural Network Fuzzy Learning. IICAI
2005, pp. 2030-2036.

[12] Mishra S., Bhende C. N.: Bacterial Foraging Technique-Based Optimized Active Power
Filter for Load Compensation, IEEE Transactions on Power Delivery, 22, 1, Jan. 2007, pp.
457–465.

[13] Kim D. H., Abraham A., Cho J. H.: A hybrid genetic algorithm and bacterial foraging
approach for global optimization, Information Sciences, 177, 18, 2007, pp. 3918-3937.

[14] Vesterstrøm J., Thomson R.: A Comparative Study of Differential Evolution, Particle Swarm
Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems, Proc. Sixth
Congress on Evolutionary Computation (CEC-2004), IEEE Press.

[15] Lampinen J., Zelinka I.: On Stagnation of the Differential Evolution Algorithm, In: Ošmera,
Pavel (ed.) (2000). Proceedings of MENDEL 2000, 6th International Mendel Conference on
Soft Computing, June 7.–9. 2000, Brno, Czech Republic.

[16] Biswas A., Dasgupta S., Das S., Abraham A.: Synergy of PSO and Bacterial Foraging
Optimization: A Comparative Study on Numerical Benchmarks, Second International Sym-
posium on Hybrid Artificial Intelligent Systems (HAIS 2007), Advances in Soft computing
Series, Springer Verlag, Germany, Corchado, E. et al. (Eds.): Innovations in Hybrid Intelli-
gent Systems, ASC 44, 2007, pp. 255-263.

[17] Noman N., Iba H.: Enhancing differential evolution performance with local search for high
dimensional function optimization, in Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, June 2005, pp. 967–974.

[18] Das S., Konar A., Chakraborty U. K.: An Improved Particle Swarm Optimization Algo-
rithm for Faster Global Search, In: ACM-SIGEVO Proceedings of Genetic and Evolutionary
Computation Conference (GECCO-2005), Washington DC, June, 2005.

[19] Yao X., Liu Y., Lin G.: Evolutionary programming made faster, IEEE Transactions on
Evolutionary Computation, 3, 2, 1999, pp. 82-102.

[20] Angeline P. J.: Evolutionary optimization versus particle swarm optimization: Philosophy
and the performance difference, Lecture Notes in Computer Science, Proceedings of 7th

International Conference on. Evolutionary Programming – Evolutionary Programming VII,
1447, 1998, pp. 84-89.

[21] Mladenovic P., Kovacevic-Vuijcic C.: Solving spread-spectrum radar polyphase code design
problem by tabu search and variable neighbourhood search, European Journal of Operational
Research, 153, 2003, pp. 389-399.

626

