
PROSIMA: Protein Similarity Algorithm

Tomáš Novosád, Václav Snášel∗

Department of Computer Science
VŠB - Technical University of Ostrava

Ostrava, The Czech Republic
Email: {tomas.novosad,vaclav.snasel}@vsb.cz

Ajith Abraham
∗Machine Intelligence Research Labs

MIR Labs, http://www.mirlabs.org Email: ajith.abraham@ieee.org

Jack Y Yang
Harvard University, PO Box 400888, Cambridge, Massachusetts 02140-0888, USA

Email: dr.jack.yang@gmail.com

Abstract

In this article we present a novel algorithm for
measuring protein similarity based on their three di-
mensional structure (protein tertiary structure). The
PROSIMA algorithm using suffix tress for discovering
common parts of main-chains of all proteins appearing
in current NCSB Protein Data Bank (PDB). By iden-
tifying these common parts we build a vector model and
next use classical information retrieval tasks based on
the vector model to measure the similarity between pro-
teins - all to all protein similarity. For the calculation
of protein similarity we are using tf-idf term weigh-
ing schema and cosine similarity measure. The goal
of this work to use the whole current PDB database
(downloaded on June 2009) of known proteins, not just
some kinds of selections of this database, which have
been studied in other works. We have chose the SCOP
database for verification of precision of our algorithm
because it is maintained primarily by humans. The next
success of this work is to be able to determine protein
SCOP categories of proteins not included in the latest
version of the SCOP database (v. 1.75) with nearly
100% precision.

1 Introduction

Analyzing three dimensional protein structures is a
very important task in molecular biology. The solution
more and more nowadays for protein structures is the

use of state-of-the-art technologies such as nuclear
magnetic resonance (NMR) spectroscopy techniques
or X-Ray crystallography as seen in the increasing
number of Protein Data Bank (PDB) [16] entries:
57944 as of June 8, 2009. Protein Data Bank is a
database of 3D structural data of large biological
molecules, such as proteins and nucleic acids. It was
proved that structurally similar proteins tend to have
similar functions even if their amino acid sequences are
not similar to each other. Thus it is very important
to find proteins with similar structures (even in
part) from the growing database to analyze protein
functions. Yang et al. [25] exploited machine learn-
ing techniques including variants of Self-Organizing
Global Ranking, a decision tree, and a support vector
machine algorithms to predict the tertiary structure of
transmembrane proteins. Hecker et al. [10] developed
a state of the art protein disorder predictor and tested
it on a large protein disorder dataset created from
Protein Data Bank. The relationship of sensitivity and
specificity is also evaluated. Habib et al. [8] presented
a new SVM based approach to predict the subcellular
locations based on amino acid and amino acid pair
composition. More protein features can be taken into
consideration and consequently improves the accuracy
significantly. Wang et al. [22] discussed an empirical
approach to specify the localization of protein binding
regions utilizing information including the distribution
pattern of the detected RNA fragments and the
sequence specificity of RNase digestion.

84978-1-4244-5612-3/09/$26.00 c©2009 IEEE



In this papers we present a novel method for an-
alyzing three dimensional protein structure using
suffix trees and classical information retrieval methods
and schemes. Several studies were developed for in-
dexing protein tertiary structure [5, 20]. These studies
are targeted mainly at some kind of selection of the
PDB database. The goal of this work is that we are
taking into account the whole current PDB database
and calculating the similarities of each protein in
comparison to each other protein. The suffix tree
is a very useful data structure which can discover
common substructures of proteins in a reasonable
time (linear or logarithmic time), depending on the
implementation of the construction algorithm.

When the generalized suffix tree is constructed
for all proteins appearing in the entire PDB database,
we are using similar methods which were previously
studied [27, 9, 3, 13, 23] for measuring the similarity
of proteins based on their three dimensional structure
definition. Our work arises from the relations of amino
acid residues defined by its dihedral angles rather
then the relations between just the Alpha Carbon
atoms. The relations between alpha carbons use DALI
for example, when computing the distance matrix
between alpha carbon atoms of a given protein. In the
final stage we are building a vector space model which
is very suitable for various information retrieval tasks
and can be used for future studies of proteins rela-
tions. Mainly we want to focus on protein hierarchical
clustering and make comparison with existing protein
hierarchical databases such as CATH.

2 Background

2.1 Protein Structure

Proteins are large molecules. In many cases only
a small part of the structure - an active site - is
directly functional, the rest existing only to create
and fix the spatial relationship among the active site
residues [11].

Chemically, protein molecules are long polymers
typically containing several thousand atoms, com-
posed of a uniform repetitive backbone (or mainchain)
with a particular sidechain attached to each residue.
The amino acid sequence of a protein records the
succession of sidechains.

The polypeptide chain folds into a curve in space;
the course of the chain defining a folding pattern.
Proteins show a great variety of folding patterns.

Underlying these are a number of common structural
features. These include the recurrence of explicit
structural paradigms - for example, α − helices and
β − sheets and common principles or features such as
the dense packing of the atoms in protein interiors.
Folding may be thought of as a kind of intramolecular
condensation or crystallization [11].

2.2 Vector Space Model

The vector model [1] of documents is dated back to
70th of the 20th century. In vector model there are
documents and users queries represented by vectors.

We use m different terms t1 . . . tm for indexing
N documents. Then each document di is represented
by a vector:

di = (wi1, wi2, . . . , wim) ,

where wij is the weight of the term tj in the document
di.
An index file of the vector model is represented by ma-
trix:

D =

⎛
⎜⎜⎜⎝

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wn1 wn2 . . . wNm

⎞
⎟⎟⎟⎠ ,

where i-th row matches i-th document, and j-th col-
umn matches j-th term.

The similarity of two documents is given for example
by following formula (cosine measure):

sim(di, dj) =

∑m

k=1
(wikwjk)√∑m

k=1
(wik)

2
∑m

k=1
(wjk)

2

For more information see [12, 15, 1].

2.3 Suffix Trees

A suffix tree is a data structure that admits efficient
string matching and querying. Suffix trees have been
studied and used extensively, and have been applied
to fundamental string problems such as finding the
longest repeated substring [24], strings comparisons [4],
and text compression [17]. Following this, we describe
the suffix tree data structure - its definition, construc-
tion algorithms and main characteristics. One major
difference is that we treat documents as sequences of
words, not characters. A suffix tree of a string is sim-
ply a compact trie of all the suffixes of that string. In
more precise terms [26] Citation:

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 85



Definition 2.1. A suffix tree T for an m-word string
S is a rooted directed tree with exactly m leaves num-
bered 1 to m. Each internal node, other than the root,
has at least two children and each edge is labeled with
a nonempty sub-string of words of S. No two edges
out of a node can have edge labels beginning with the
same word. The key feature of the suffix tree is that
for any leaf i, the concatenation of the edge labels on
the path from the root to leaf i exactly spells out the
suffix of S that starts at position i, that is it spells out
S[i . . .m].

In cases where one suffix of S matches a prefix of
another suffix of S then no suffix tree obeying the
above definition is possible since the path for the
first suffix would not end at a leaf. To avoid this, we
assume the last word of S does not appear anywhere
else in the string. This prevents any suffix from being
a prefix to another suffix. To achieve this we can add
a terminating character, which is not in the language
that S is taken from, to the end of S.

In a similar manner, a suffix tree of a set of strings,
called a generalized suffix tree [7], is a compact trie of
all the suffixes of all the strings in the set [26]:

Definition 2.2. A generalized suffix tree T for a set S

of n strings Sn, each of length mn, is a rooted directed
tree with exactly

∑
mn leaves marked by a two number

tuple (k, l) where k ranges from 1 to n and l ranges from
1 to mk. Each internal node, other than the root, has
at least two children and each edge is labeled with a
nonempty sub-string of words of a string in S. No two
edges out of a node can have edge labels beginning with
the same word. For any leaf (i, j), the concatenation of
the edge labels on the path from the root to leaf (i, j)
exactly spells out the suffix of Si that starts at position
j, that is it spells out Si[j . . . mi].

Several linear time algorithms for constructing suffix
trees exist [14, 21, 24]. To be precise, these algorithms
also exhibit a time dependency on the size of the vo-
cabulary (or the alphabet when dealing with charac-
ter based trees): they actually have a time bound of
O(L×min(log |V |, log L)), where L is the length of the
string and |V | is the size of the language. These meth-
ods are more difficult to implement then the simple
method. In this work we have made some implemen-
tation improvements of the naive method to achieve
better than the O(L2) worst-case time bound [13].

3 Preparing the Data

In this section we describe the process of retrieving
the data for protein indexing. We are using the whole

current PDB database which consists of approximately
58000 known proteins.

3.1 Creating Proteins Collection

In the current PDB database we can find proteins,
nucleic acids and complex assemblies. Our study is
focused just on relations between proteins. We have
filtered out all nucleic acids and complex assemblies
from the entire PDB database. Next we have filtered
out proteins which have incomplete N-Cα-C-O back-
bones (e.g. some of the files have C atoms in the
protein backbone missing, etc.).

After this cleaning step we have obtained a col-
lection consisting of 53069 files. Each such that the
file contains a description of one protein and its three
dimensional structure and contains only amino acid
residues with complete a N-Cα-C-O atom sequence.

From each such that the file we have retrieved
has at least one main chain (some proteins have
more than one main chain) of at least one model (in
some cases PDB files contains more models of three
dimensional protein structure). In cases when the
PDB file contains more main chains or more models
we take into account all main chains of all models.

3.2 Encoding the 3D Protein Main Chain Struc-
ture for Indexing

To be able to index proteins by IR techniques
we need to encode the 3D structure of the protein
backbone into some sequence of characters, words or
integers (as in our case). Since the protein backbone is
the sequence of the amino acid residues (in 3D space)
we are able to encode this backbone into the sequence
of integers in the following manner.

For simple example let’s say the protein back-
bone consists of four amino acid residues M V L
S (abbreviations for methionie, valine, leucine and
serine). The relationship between the two following
residues can be described by its dihedral angles φ, ψ

and ω [11]. Since φ and ψ are taking values from the
interval 〈−180◦, 180◦〉 we have to do some normaliza-
tion. From this interval we have obtained 36 values
(the interval was divided into 35 equal parts, by 10◦

degrees) i.e. −180◦, −170◦,. . . ,0◦,10◦,. . . ,180◦. Each
of these values was labeled with a positive number
(00, 01, 02, . . . , 35). Now, let’s say that φ is −21◦,
the closest discrete value is −20◦ which has the label
02, so we have encoded this dihedral with the string

86 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)



’02’. The same holds for ψ. The ω was encoded as the
two characters A or B since the ω tends to be almost
in every case 0◦ or 180◦. After concatenation of these
three parts we get a string which looks something like
this ’A0102’ which means that ω ≈ 180◦, φ ≈ −10◦,
ψ ≈ −20◦

3.3 Indexing

The major objective of this stage is to prepare the
data for indexing by suffix trees. The suffix tree can
index sequences. The resulting sequence in our case is
a sequence of integers (positive numbers). For simple
example let’s say we have a protein with a backbone
consisting of 6 residues e.g. M V L S E G with its
three dimensional properties. The resulting encoded
sequence can be for example:
{A3202, A2401, A2603, A2401, A2422}
After obtaining this sequence of 5 words, we create a
dictionary of these words (each unique word receives its
own unique integer identifier). The translated sequence
will look like this:
{0, 1, 2, 1, 3}
In this way we encode each main chain of each model
contained into one PDB file. This task is done for every
protein included in our filtered PDB collection. Now
we are ready for indexing proteins using suffix trees.

4 PROSIMA - Protein Similarity Algo-

rithm

In this section we describe the algorithm for measur-
ing protein similarity based on their tertiary structure.
A brief description of the algorithm follows:

1. Prepare the data as was mentioned in section 3.

2. Insert all encoded main chains of all proteins in
the collection into the generalized suffix tree data
structure.

3. Find all maximal substructures clusters in the suf-
fix tree.

4. Construct a vector model of all proteins in our
collection.

5. Build proteins similarity matrix.

6. For each protein find top N similar proteins.

4.1 Inserting All Main Chains into the Suffix Tree

In this stage of the algorithm we will be construct-
ing a generalized suffix tree of all encoded main chains.

As was mentioned in section 3, we obtain the encoded
forms of three dimensional protein main chains - se-
quences of positive numbers. All of these sequences are
inserted into the generalized suffix tree data structure
(section 2.3).

4.2 Finding All Maximal Substructure Clusters

To be able to build a vector model of proteins we
have to find all maximal phrase clusters. The phrase
in our context is an encoded protein main chain or any
of its parts (words of the phrase is encoded dihedral
angles). The document in our context can be seen as a
set of encoded main chains of the protein. Now we can
define a maximal phrase cluster (the longest common
substructure) [27]:

Definition 4.1. A phrase cluster is a phrase that is
shared by at least two documents, and the group of
documents that contain the phrase. A maximal phrase
cluster is a phrase cluster whose phrase cannot be ex-
tended by any word in the language without chang-
ing (reducing) the group of documents that contain it.
Maximal phrase clusters are those we are interested in.

Now we simply traverse the generalized suffix tree
and identify all maximal phrase clusters (i.e. all of the
longest common substructures).

4.3 Building a Vector Model

In this section we describe the procedure of building
the matrix representing the vector model index file
(section 2.2). In a classical vector space model the
document is represented by the terms respectively
by the weights of the terms. In our model the
document is represented not by the terms
but it is represented by the common phrases
(maximal phrase clusters)!

In the previous stage of the algorithm we have
identified all maximal phrase clusters - all of the
longest common substructures. From the definition of
the phrase cluster we know that the phrase cluster is
the group of the documents sharing the same phrase
(group of proteins sharing the same substructure).
Now we can obtain the matrix representing the vector
model index file directly from the generalized suffix
tree. Each document (protein) is represented by the
maximal phrase clusters in which it is contained. For
computing the weights of the phrase clusters we are
using a tf − idf weighting schema:

wij = tfij × idfj = tfij × log
n

dfj

(1)

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 87



where tfij is the frequency of term tj in document
di and dfj is count of documents where term tj appears
in, and n is the total count of documents in collection.

Simple example: let’s say we have a phrase clus-
ter containing documents di. These documents share
the same phrase tj . We compute wij values for all
documents appearing in a phrase cluster sharing the
phrase tj . This task is done for all phrase clusters
identified by the previous stage of the algorithm.

Now we have a complete matrix representing the
index file in a vector space model (section 2.2).

4.4 Building a Similarity Matrix

In the previous stage of the algorithm we have con-
structed a vector model index file. To build a pro-
tein similarity matrix we use standard information re-
trieval techniques for measuring the similarity in a vec-
tor space model. As was mentioned in section 2.2 we
have used cosine similarity which looks quite suitable
for our purpose. The similarity matrix will be:
Documents (proteins) similarity matrix:

S =

⎛
⎜⎜⎜⎝

0 sim(d1, d2) . . . sim(d1, dn)
sim(d2, d1) 0 . . . sim(d2, dn)

...
...

. . .
...

sim(dn, d1) sim(dn, d2) . . . 0

⎞
⎟⎟⎟⎠ ,

where the i-th row matches the i-th document (pro-
tein respectively), and the j-th column matches the
j-th document (protein). The similarity matrix is
diagonally symmetrical. Note that on the diagonal we
have put zeros to eliminate sim(di, di) which is always
equal to 1 and for the simplification of the last step of
the algorithm.

As this task is the most time consuming, we have
developed a multi-threaded variant of computing
this similarity matrix. We have simply divided the
similarity matrix into n equal parts and for each
ni thread computed its own part of the similarity
matrix. By this little enhancement we have achieved
a very good reduction of the time needed to compute
the similarity matrix - multiprocessors or multi-core
processors computers required.

4.5 Finding Similar Proteins

This step is quite simple. When we have computed
the similarity matrix S, we simply sort the documents
(proteins) on each row according to its scores. The

higher score the more similar protein is. This is done
for each protein in our protein collection.

5 Evaluation and Testing

5.1 Structural Classification of Proteins

To evaluate the accuracy and effectiveness of our
algorithm we are using a comparison with the SCOP
database [19]. It is maintained primarily by humans in
contrast with for example CATH [2], which uses some
automated methods. We are using the current ver-
sion of the SCOP database (v. 1.75 released on June
2009) which contain 38221 of proteins classified. We
have chose SCOP because we wanted to evaluate our
algorithm to manually classified proteins rather than
to automated methods.

5.2 Evaluation

For each protein P in our collection C we did the
following:

1. For protein P determine the class, folding pattern
group, super-family, family and domain.

2. Based on the similarity matrix, find N most simi-
lar proteins PS according to their score of similar-
ity to protein P .

3. For each protein PS determine the class, folding
pattern group, super-family, family and domain.

4. For all proteins in our collection compute the per-
centage of correctly classified proteins PS to pro-
tein P .

We did this for each protein in our collection and
computed the overall percentage accuracy over our
filtered collection. There are approximately 20000
unclassified proteins because they do not appear in
current SCOP database.

In more precise terms: let’s say we have protein
P . Based on the calculated similarity matrix we
sort all other proteins PS in our protein collection
in descending order according to their scores. The
greater the score the more similar the protein is to
protein P . We take only the top N highest scoring
proteins (the top N most similar proteins to the given
protein). We set N to the value of 20. After that
we obtain a list such that the similar proteins for
every protein in our collection we have determined the
SCOP classification of those proteins.

88 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)



5.3 Experiments

Here we present our first results with this new
method of measuring protein similarity based on their
tertiary structure and int comparison with the SCOP
database. All experiments were run on computer with
32 GBytes of RAM and 4 AMD 64 bit Opteron dual
core CPUs. The whole PDB database indexed by our
version of the suffix tree construction algorithm takes
abou 3.2 GBytes of RAM and about 55 minutes of
time (section 4.1). The calculation of the similarity
matrix 4.4 takes about 54 hours of time and 12 Gbytes
of RAM since the similarity matrix is computed in
memory.

First we have computed a percentage accuracy of
all proteins in the entire SCOP database (32509
proteins classified), next we have computed the accu-
racy only for proteins for which our algorithm found
proteins with at least some given score of similarity
(e.g. we have protein A and for this protein exists at
least one protein which has a score of similarity with
protein A of at least 0.2 - we cut off all proteins which
do not satisfy this assumption) - this is some kind of
threshold or cutoff.

The description of the following table 1 is as fol-
lows (Figures 1, 2, 3, 4, 5 show these results in a graph
representation). Column No. means the ordering of
similar proteins (e.g. No. 1 means the most similar
protein to a given protein, No. 10 means the 10th
most similar protein to a given protein). Column
sim was mentioned above. Line Count means for
how many proteins with this cutoff were found in
our collection. For example line 1 of the table 1 (not
considering the header of the table) means that all
the proteins placed in the 1st place (i.e. the most
similar protein to given a protein) has a 89.36909%
accuracy in the classification of class with no cutoff, a
89.62752% accuracy with the cutoff of proteins scoring
less than 0.1, etc...

We have also identified class, fold, super-family,
family and domain of proteins which are not classified
by the SCOP with almost 100% membership accuracy.
Table 2 shows these results. Let’s examine line 4 of this
table. Column sim = 0.2 means that we have chosen
only proteins which have at least one structurally
similar protein with a score of similarity of at least
0.2. Column mpaClass means minimal membership
percentage accuracy to the scop protein class (same for
Fold, Superfamily, Family and Domain). Column UPC
- Unclassified proteins count is the count of proteins

No. sim 0.0 sim 0.10 sim 0.15 sim 0.20 sim 0.25

1 87.45 87.72 95.29 98.89 99.40

2 83.33 83.56 91.22 95.23 96.28

3 81.35 81.58 88.67 93.06 94.49

4 79.80 80.03 86.66 90.82 92.56

5 78.07 78.28 85.08 89.05 90.70

6 77.41 77.63 83.92 87.88 89.50

7 76.25 76.48 82.38 86.66 88.07

8 75.29 75.49 81.25 85.10 86.59

9 75.03 75.22 80.77 84.59 85.97

10 73.75 73.95 79.65 83.43 85.09

Count 35951 35663 23962 15408 10507

Table 1. Class classification percentage accu-
racy.

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

C
la

ss
 M

em
be

rs
hi

p 
%

 A
cc

ur
ac

y

Ranking

cut-off 0.00
cut-off 0.10
cut-off 0.15
cut-off 0.20
cut-off 0.25
cut-off 0.30

Figure 1. Protein Class Membership Percent-
age Accuracy.

which are not classified by SCOP and which appear
in the first place in the list of similar proteins to a
given protein. Column TPC - Total proteins count
is the total count of proteins which have at least one
structurally similar protein with a score of similarity
of 0.2. In summary this means that we have found
784 unclassified proteins by using SCOP out of 15408,
such that proteins have a 98.89% class membership
accuracy, a 98.46% fold membership accuracy, etc.

6 Conclusion

In this article we have presented a novel method for
measuring protein similarities using suffix tree data
structure and information retrieval techniques. The
method is fully automated and in comparison with the
human maintained database SCOP has achieved very
good results. We have also proved that we can use

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 89



 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

F
ol

di
ng

 P
at

te
rn

 M
em

be
rs

hi
p 

%
 A

cc
ur

ac
y

Ranking

cut-off 0.00
cut-off 0.10
cut-off 0.15
cut-off 0.20
cut-off 0.25
cut-off 0.30

Figure 2. Protein Folding Pattern Membership
Percentage Accuracy.

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

S
up

er
-f

am
ily

 M
em

be
rs

hi
p 

%
 A

cc
ur

ac
y

Ranking

cut-off 0.00
cut-off 0.10
cut-off 0.15
cut-off 0.20
cut-off 0.25
cut-off 0.30

Figure 3. Protein Super-Family Membership
Percentage Accuracy.

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

F
am

ily
 M

em
be

rs
hi

p 
%

 A
cc

ur
ac

y

Ranking

cut-off 0.00
cut-off 0.10
cut-off 0.15
cut-off 0.20
cut-off 0.25
cut-off 0.30

Figure 4. Protein Family Membership Percent-
age Accuracy.

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

D
om

ai
n 

M
em

be
rs

hi
p 

%
 A

cc
ur

ac
y

Ranking

cut-off 0.00
cut-off 0.10
cut-off 0.15
cut-off 0.20
cut-off 0.25
cut-off 0.30

Figure 5. Protein Domain Membership Per-
centage Accuracy.

sim mpaC mpaF mpaSF mpaF mpaD UPC TPC

0.00 87.45 80.51 80.23 79.75 77.44 4793 35951

0.10 87.72 80.90 80.62 80.13 77.81 4712 35663

0.15 95.29 92.74 92.62 92.42 91.20 1846 23962

0.20 98.89 98.46 98.44 98.37 97.92 784 15408

0.25 99.40 99.17 99.17 99.07 98.79 460 10507

0.30 99.32 99.14 99.14 99.05 98.85 296 6981

Table 2. Proteins unclassified by using SCOP
found by our algorithm and their membership
percentage accuracy (mpa) to a given Class,
Fold, Super-family, Family and Domain.

common information retrieval models and methods for
measuring similarity of proteins. With these methods
we have achieved very good results.

We are also able to determine classes, folds, super-
families, families and domains of many unclassified
proteins contained in the current SCOP database
with almost 100% membership accuracy. By the
simple observation that when the unclassified protein
is most similar to the protein which is classified and
have at least some given score, than in 99% cases the
unclassified protein has a similar SCOP categories as
known proteins.

In future work we want to use the similarity ma-
trix for other information retrieval tasks such as
clustering. The clustering of proteins is one of the first
steps in the homology modeling of proteins, which we
want to develop in the future.

90 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)



References

[1] Baeza-Yates R., Ribeiro-Neto B.: Modern Informa-
tion Retrieval. Adison Wesley, 1999.

[2] CATH: Protein Structure Classification
http://www.cathdb.info/ (last access July-10 2009)

[3] Chim H. and Deng X.: A new suffix tree similarity
measure for document clustering. In Proceedings of
the 16th international Conference on World Wide
Web. WWW 2007. ACM, New York, NY, pages
121-130.

[4] Ehrenfeucht A., Haussler D.: A new distance met-
ric on strings computable in linear time. Discrete
Applied Math, 20(3): 191-203 (1988).

[5] Gao F., Zaki M.J.: PSIST: Indexing Protein Struc-
tures using Suffix Trees. Proc. IEEE Computational
Systems Bioinformatics Conference (CSB), pages
212-222, 2005.

[6] Google Search Engine: http://www.google.com.

[7] Gusfield, D. Algorithms on Strings, Trees and Se-
quences: Computer Science and Computational Bi-
ology, Cambridge University Press, 1997.

[8] Habib T., Zhang C., Yang J.Y., Yang M.Q., Deng
Y.: Supervised learning method for the prediction
of subcellular localization of proteins using amino
acid and amino acid pair composition. BMC Ge-
nomics 2008, 9(Suppl 1):S16.

[9] Hammouda K.M. and Kamel M.S.: Efficient
phrase-based document indexing for web document
clustering. IEEE Transactions on Knowledge and
Data Engineering, 16(10):1279-1296, 2004.

[10] Hecker J., Yang J.Y., Cheng J.: Protein disor-
der prediction at multiple levels of sensitivity and
specificity. BMC Genomics 2008, 9(Suppl 1):S9.

[11] Lesk A.M.: Introduction to Bioinformatics, Ox-
ford University Press, USA, 2008.

[12] Manning, C. D.; Raghavan, P.; Schütze, H. Intro-
duction to Information Retrieval. Cambridge Uni-
versity Press; 1 2008.

[13] Martinovič J., Novosád T., Snášel V.: Vec-
tor Model Improvement Using Suffix Trees. IEEE
ICDIM 2007: pages 180-187

[14] McCreight E.: A space-economical suffix tree con-
struction algorithm. In Journal of the ACM, pages
23:262–272, 1976.

[15] C.J. van Rijsbergen: Information Retrieval (sec-
ond ed.). London, Butterworths, 1979.

[16] RCSB Protein Databank - PDB.
http://www.rcsb.org (last access July-10 2009)

[17] Rodeh M., Pratt V.R., and Even S.: Linear algo-
rithm for data compression via string matching. In
Journal of the ACM, pages 28(1):16–24, 1981.

[18] Salton, G., and Buckley, C. Term-weighting ap-
proaches in automatic text retrieval. Information
Processing and Management, 24(5):513-523, 1988.

[19] SCOP: a structural classification of proteins
database for the investigation of sequences and
structure.
http://scop.mrc-lmb.cam.ac.uk/scop/ (last access
July-10 2009)

[20] Shibuya T.: Geometric Suffix Tree: A new index
structure for protein 3D structures. In Combina-
torial Pattern Matching, LNCS 4009, pages 84-93,
2006.

[21] Ukkonen E.: On-line construction of suffix trees.
In Algorithmica, pages 14:249–60, 1995.

[22] Wang X., Wang G., Shen C., Li L., Wang X.,
Mooney S.D., Edenberg H.J., Sanford J.R., Liu Y.:
Using RNase sequence specificity to refine the iden-
tification of RNA-protein binding regions. BMC
Genomics 2008, 9(Suppl 1):S17.

[23] Lexa M., Snášel V., Zelinka I.: Data-mining
protein structure by clustering, segmentation and
evolutionary algorithms. In Data Mining: Theo-
retical Foundations and Applications. Germany :
Springer Verlag, 2009. Studies in Computational
Intelligence, Volume 204, ISBN 978-3-642-01087-3,
pp. 221-248

[24] Weiner P.: Linear pattern matching algorithms.
In The 14th Annual Symposium on Foundations of
Computer Science, pages 1–11, 1973.

[25] Yang J.Y., Yang M.Q., Dunker A.K., Deng Y.,
Huang X: Investigation of transmembrane proteins
using a computational approach. BMC Genomics
2008, 9(Suppl 1):S7.

[26] Zamir O.: Clustering web documents: A phrase-
based method for grouping search engine results.
In Doctoral dissertation. University of Washington,
1999.

[27] Zamir O., Etzioni O.: Web document clustering:
A feasibility demonstration. In SIGIR’98, pages 46–
54, 1998.

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 91



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


