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Abstract. We propose a new perspective for solving systems of nonlin-
ear equations by viewing them as a multiobjective optimization problem
where every equation represents an objective function whose goal is to
minimize the difference between the right- and left-hand side of the cor-
responding equation of the system. An evolutionary computation tech-
nique is suggested to solve the problem obtained by transforming the
system into a multiobjective optimization problem. Results obtained are
compared with some of the well-established techniques used for solving
nonlinear equation systems.

1 Introduction

A nonlinear system of equations is defined as:

f(x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)
...
fn(x)

⎤
⎥⎥⎥⎦ ,

x = (x1, x2, . . . , xn), which means there are n equations and n variables, where
f1, . . . , fn are nonlinear functions in the space of all real valued continuous func-

tions on Ω =
n∏

i=1

[ai, bi] ⊂ �n.

Some of the equations can be linear, but not all of them. Finding a solution
for a nonlinear system of equations f(x) involves finding a solution such that
every equation in the nonlinear system is 0:

(P )

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x1, x2, ..., xn) = 0
f2(x1, x2, ..., xn) = 0
...
fn(x1, x2, ..., xn) = 0

. (1)

A. Gelbukh and C.A. Reyes-Garcia (Eds.): MICAI 2006, LNAI 4293, pp. 283–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



284 C. Grosan, A. Abraham, and A. Gelbukh

Fig. 1. Example of solution in the case of a two nonlinear equation system represented
by f1 and f2

In Figure 1, the solution for a system having two nonlinear equations is de-
picted. There are also situations when a system of equations has multiple solu-
tions. For instance, the system:

⎧
⎪⎪⎨
⎪⎪⎩

f1(x1, x2, x3, x4) = x2
1 + 2x2

2 + cos(x3) − x2
4 = 0

f1(x1, x2, x3, x4) = 3x2
1 + x2

2 + sin2(x3) − x2
4 = 0

f1(x1, x2, x3, x4) = −2x2
1 − x2

2 − cos(x3) + x2
4 = 0

f1(x1, x2, x3, x4) = −x2
1 − x2

2 − cos2(x3) + x2
4 = 0

has two solutions: (1, -1, 0, 2) and (-1, 1, 0, -2). The assumption is that a zero,
or root, of the system exists. The solutions of interest are those points (if any)
that are common to the zero contours of fi, i = 1, ..., n. There are several ways
to solve nonlinear equation systems ([1], [5]-[9] and [13]). Probably the Newton
type is one of the most established techniques. Other methods are depicted as
follows:

– Trust-region method [3];
– Broyden method [2];
– Secant method [12];
– Halley method [4].

Newton’s method. In Newton’s method, f is approximated by the first order
Taylor expansion in a neighborhood of a point xk ∈ �n. The Jacobian matrix
J(xk) ⊂ �nxn to f(x) evaluated at xk is given by:
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J =

⎡
⎢⎣

δf1
δx1

... δf1
δxn

...
...

δfn

δx1
... δfn

δxn

⎤
⎥⎦ .

Then:
f(xk + t) = f(xk) + J(xk)t + O(||p||2).

By setting the right side of the equation to zero and discarding terms higher
than first order (O(||p||2)) the relationship J(xk)t = −f(xk) is obtained. Then,
the Newton algorithm is described as follows:

Algorithm 1. Newton algorithm
Set k=0.
Guess an approximate solution x0.
Repeat

Compute J(xk) and f(xk).
Solve the linear system J(xk)t = −f(xk).
Set xk+1 = xk + t.
Set t = t + 1.

Until converge to the solution

The index k is an iteration index and xk is the vector x after k iterations. The
idea of the method is to start with a value which is reasonably close to the true
zero and then replaces the function by its tangent and computes the zero of this
tangent. This zero of the tangent will typically be a better approximation to the
function’s zero, and the method can be iterated. This algorithm is also known
as Newton-Raphson method. There are also several other Newton methods. It
is very important to have a good starting value (the success of the algorithm
depends on this). The Jacobian matrix is needed but in many problems analytic
derivatives are unavailable. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be prohibitive.

Broyden’s method. The approximate Jacobian is denoted by: δx = −J−1f.
Then the i-th quasi-Newton step δxi is the solution of Biδxi = −fi, where δxi =
xi+1xi. The quasi-Newton or secant condition is that Bi+1 satisfy Bi+1δxi = δfi,
where δfi = fi+1 − fi. This is the generalization of the one-dimensional secant
approximation to the derivative δf

δx .
Many different auxiliary conditions to pin down Bi+1 have been explored, but

the best-performing algorithm in practice results from Broyden’s formula. This
formula is based on the idea of getting Bi+1 by making the least change to Bi con-
sistent with the secant equation. Broyden showed that the resulting equation as:

Bi+1 = Bi +
(δfi − Biδxi) ⊗ δxi

(δxi)2
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Secant method. The secant method is a root-finding algorithm that uses a
succession of roots of secant lines to better approximate a root of a function.
The secant method is defined by the recurrence relation

xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn)

As evident from the recurrence relation, the secant method requires two initial
values, x0 and x1, which should ideally be chosen to lie close to the root. As
illustrated in Figure 2, two points a and b are initially considered. Then the
secant of chord of the the graph of function f through the points (a, f(a)),
(b, f(b)) is defined as:

y − f(b) =
f(b) − f(a)

b − a
(x − b).

The point c is chosen to be the root of this line such that:

f(b) +
f(b) − f(a)

b − a
(c − b) = 0.

Solving this equation gives the recurrence relation for the secant method. The
new value c is equal to xn+1, and b and a are xn and xn−1, respectively.

Fig. 2. An example of secant method

Effati’s method. Effati and Nazemi [10] proposed a new method for solving
systems of nonlinear equations. Their proposed method [10] is summarized be-
low. The following notation is used:
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xi(k + 1) = fi(x1(k), x2(k), ..., xn(k));

f(xk) = (f1(xk), f2(xk), ..., fn(xk));

i = 1, 2..., n and xi : N → �.
If there exist a t such that x(t) = 0 then fi(x(t − 1)) = 0, i = 1, ..., n. This

involves that x(t − 1) is an exact solution for the given system of equations.
Define u(k) = (u1(k), u2(k), ..., un(k)), x(k + 1) = u(k), and f0 : Ω × U → �

(Ω and U are compact subsets of �n):

f0(x(k), u(k)) = ‖u(k) − f(x(k))‖2
2.

The error function E is defined as follows:

E[xt, ut] =
t−1∑
k=0

f0(x(k), u(k)),

xt = (x(1), x(2), ..., x(t − 1), 0)
ut = (u(1), u(2), ..., u(t − 1), 0).

Consider the following problem:

(P1)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimizeE[xt, ut] =
t−1∑
k=0

f0(x(k), u(k))

subject to
x(k + 1) = u(k)
x(0) = 0, x(t) = 0, (x0 is known)

. (2)

As per theorem illustrated in [10], if there is an optimal solution for the problem
P1 such that the value of E will be zero, then this is also a solution for the
system of equations we want to solve. The problem is transformed to a measure
theory problem. By solving the transformed problem ut is firstly constructed
and from there, xt is obtained. Reader is advised to consult [10] for details. The
measure theory method is improved in [10]. The interval [1, t] is divided into the
subintervals S1 = [1, t− 1] and S2 = [t − 1, t]. The problem P1 is solved in both
subintervals and two errors E1 and E2 respectively are obtained. This way, an
upper bound for the total error if found. If this upper bound is estimated to be
zero then an approximate solution for the problem is found.

2 Transforming the Problem into a Multiobjective
Optimization Problem

The basic definitions of a multiobjective optimization problem and what it de-
notes an optimal solution is formulated as follows [15]:

Let Ω be the search space. Consider n objective functions f1, f2. . . fn,

fi : Ω → �, i = 1, 2, . . . , n,
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where Ω ⊂ �m. The multiobjective optimization problem is defined as:
⎧
⎨
⎩

optimize f(x) = (f1(x), ..., fn(x))
subject to
x = (x1, x2, . . . xm) ∈ Ω.

For deciding wether a solution is better than another solution or not, the follow-
ing relationship between solutions might be used:

Definition 1 (Pareto dominance). Consider a maximization problem. Let x, y be
two decision vectors (solutions) from Ω. Solution x dominates y (also written as
x � y) if and only if the following conditions are fulfilled:

(i) fi(x) ≥ fi(y), ∀i = 1, 2, . . . , n,
(ii) ∃j ∈ {1, 2, . . . , n}: fj(x) > fj(y).

That is, a feasible vector x is Pareto optimal if no feasible vector y can increase
some criterion without causing a simultaneous decrease in at least one other
criterion. In the literature other terms have also been used instead of Pareto op-
timal or minimal solutions, including words such as non-dominated, non-inferior,
efficient, functional-efficient solutions etc. The solution x0 is ideal if all objectives
have their optimum in a common point x0.

Definition 2 (Pareto front). The images of the Pareto optimum points in the
criterion space are called Pareto front. The system of equations (P ) can be
transformed into a multiobjective optimization problem. Each equation can be
considered as an objective function. The goal of this optimization function is to
minimize the difference (in absolute value) between left side and right side of
the equation. Since the right term is zero, the objective function will be given
by the absolute value of the left term.

The system (P ) is then equivalent to:

(P ′)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

minimize abs(f1(x1, x2, ..., xn))
minimize abs(f2(x1, x2, ..., xn))
...
minimize abs(fn(x1, x2, ..., xn))

3 Evolutionary Nonlinear Equation System

An evolutionary technique is proposed for solving the multiobjective problem
obtained by transforming the system of equations. Some starting points (initial
solutions) are generated based on the problem domain defined and these solutions
are evolved in an iterative manner. In order to compare the two solutions, Pareto
dominance relationship is used. Genetic operators such as Convex crossover and
Gaussian mutation are used [11]. An external set is used for storing all the non-
dominated solutions found during the iteration process. Tournament selection
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is applied. n individuals are randomly selected from the unified set of current
population and external population. Out of these n solutions the one which
dominated a greater number of solutions is chosen. If there are two or more
’equal’ solutions then one of them is picked at random. At each iteration, this
archive is updated by introducing all the non-dominated solutions obtained at
the respective step and by removing from the external set of all solutions that
might become dominated.

The proposed algorithm is described as follows:

Algorithm 2. Evolutionary Multiobjective Optimization (EMO) algorithm
Step 1. Set t = 0.
Randomly generate population P (t).
Set EP (t) = ∅. (EP denoted the external population).
Step 2. Repeat

Step 2.1. Evaluate P (t)
Step 2.2. Selection (P (t) ∪ EP (t))
Step 2.3. Crossover
Step 2.4. Mutation
Step 2.3. Select all nondominated individuals obtained
Step 2.3. Update EP (t)
Step 2.3. Update (P (t) (keep best between parents and offspring)
Step 2.3. Set t := t + 1

Until t = numberofgenerations
Step 3. Print EP (t)

4 Experiments, Results, and Discussions

This section reports several experiments and comparisons. We consider the same
problems (Examples 1 and 2 below) as Effati [10]. Parameter values used by the
evolutionary approach are given in Table 1.

Table 1. Parameter values used in the experiments by the evolutionary approach

Parameter
Value

Example 1 Example 2

Population size 250 300
Number of generations 150 200
Sigma (for mutation) 0.1 0.1
Tournament size 4 5

Example 1. Consider the following nonlinear system:
{

f1(x1, x2) = cos(2x1) − cos(2x2) − 0.4 = 0
f2(x1, x2) = 2(x2 − x1) + sin(2x2) − sin(2x1) − 1.2 = 0 .
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Results obtained by applying Newton’s method, Effati’s technique, and the
proposed EMO method are presented in Table 2. A sample solution obtained
by the EMO approach is presented in Table 2. More Pareto solutions and the
corresponding absolute values of the functions f1 and f2 are presented in Table 3.

Table 2. Empirical results for Example 1

Method Solution Function absolute values

Newton’s method (0.15, 0.49) (-0.00168, 0.01497)
Secant method (0.15, 0.49) (-0.00168, 0.01497)
Broyden’s method (0.15, 0.49) (-0.00168, 0.01497)
Effati’s method (0.1575, 0.4970) (0.005455, 0.00739)
EMO approach (0.15772, 0.49458) (0.001264, 0.000969)

Table 3. Nondominated solutions and the corresponding objectives values obtained
by EMO approach for Example 1

x1 x2 f1 f2

0.15780 0.4943 0.00212 0.00075
0.1577 0.4945 0.001139 0.00119
0.1578 0.4942 0.000583 0.002439
0.1577 0.4943 0.000812 0.00173
0.1578 0.04941 0.000416 0.00274
0.15775 0.4945 0.00111 0.00131
0.1577 0.49455 0.00123 0.000964
0.1569 0.4942 0.001142 0.00107
0.1568 0.4941 0.001035 0.00115
0.1570 0.4942 0.001078 0.000681

In Figure 3, the Pareto front obtained by the solutions presented in the Table 3
are presented. As evident from Figure 3, all the solutions plotted are nondomi-
nated. The user can select the desired solution taking into account of the different
preferences (for instance, the one for which one objective is having a value closed
to the desired value, or the one for which the sum of both objectives is minimal,
etc). As illustrated in Table 2, results obtained by the evolutionary approach
are better than the ones obtained by the other techniques. Also, by applying
an evolutionary technique we don’t need any additional information about the
problem (such as the functions to be differentiable, a good starting point, etc).

Example 2. We consider the following problem:
{

f1(x1, x2) = ex1 + x1x2 − 1 = 0
f2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0 .

Results obtained by Effati’s method and one solution obtained by the EMO
approach are given in Table 4.
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Fig. 3. Pareto front obtained by the EMO approach for the Example 1

Table 4. Empirical results for Example 2

Method Solution Function absolute values

Effati (0.0096, 0.9976) (0.019223, 0.016776)
EMO approach (0.00138, 1.0027) (0.00276, 6.37E-5)

Table 5. Nondominated solutions and the corresponding objectives values obtained
by EMO approach for Example 2

x1 x2 f1 f2

0.00130 1.0025 0.00260 0.00510
0.0011 0.0030 0.00220 0.00520
0.0012 1.0020 0.002403 0.00440
0.0004 1.0023 0.000801 0.00310
0.0003 1.0028 0.000600 0.00340
0.00028 1.0029 0.000560 0.00346
0.00025 1.004 0.000501 0.00450
0.0015 1.0043 0.0003006 0.00460
0.0017 1.0041 0.000340 0.00444
0.0001 1.005 0.0002005 0.00520

The nondominated solutions and the corresponding functions values obtained
by EMO approach are presented in Table 5. Pareto front obtained by the EMO
method for Example 2 are depicted in Figure 4. For this example, the evo-
lutionary approach obtained better results than the results reported by Ef-
fati’s method. These experiments show the efficiency and advantage of applying
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Fig. 4. Pareto front obtained by the EMO approach for the Example 2

evolutionary techniques for solving systems of nonlinear equations against stan-
dard mathematical approaches.

5 Conclusions

The proposed approach seems to be very efficient for solving equation systems.
In this paper, we analyzed a case of nonlinear equation systems. The proposed
approach could be extended and applied for higher dimensional systems. In a
similar manner, inequations systems could be also solved.
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