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Abstract. This paper proposes a procedure for solving total time minimization in fuzzy transportation problem where the trans-
portation time, source and destination parameters have been expressed as exponential fuzzy numbers by the decision maker. An
algorithm is developed to obtain the optimal solution as exponential fuzzy number, which enables the decision maker to obtain
more informing results and wider knowledge on the problem under consideration. A numerical example is solved to check the
validity of the proposed procedure.
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1. Introduction

The time minimizing transportation problem is
encountered in connection with transportation of per-
ishable goods, with the delivery of emergency supplies
fire services, ambulance services or when military units
are to be sent from their basis to the fronts. The time
minimization transportation problem also known as
the bottleneck transportation problem has already been
studied by Arora and Puri [1], Burkard et al. [5] Gar-
frinkle and Rao [6], Hammer [8], Iserman [10], Szwarc
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Technical University of Ostrava, Ostrava, Czech Republic. E-mail:
ajith.abraham@ieee.org.

[18], Mathur and Puri [11] and H.L. Bhatia, Swarup
Kanti, M.C. Puri [4] and others.

There are two types of problems regarding the
transportation time [19]: (i) minimization of the total
transportation time (linear function, as aggregate the
products of transportation time and quantity) called
minimization of 1st transportation time and (ii) mini-
mization of the transportation time of the longest active
transporting route (non-linear function) called min-
imization of 2nd transportation time or problem of
Barasov [3]. For (ii), the total number of units on trans-
portation operation with longest time is minimized in
[8]. An important variant of the total transportation time
problems is formulated and resolved in [12], which is
also included in [20].

The transportation time of the longest active trans-
portation route(s) in problems where all destinations
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don’t have the same importance are analyzed as the
three classes single criteria and multi-criteria problems
of the transportation time. The corresponding algo-
rithms are developed in case of problems with priority
according to demands of the subset of the destinations
[14. Some bicriteria transportation problems are shown
too [2, 13]. Another typical transportation problems are
exposed in [16] and a research directive in [7].

In this paper, time minimization transportation is
considered under uncertain environment due to geo-
graphic features such as low road density. A 2009
USITC report mentions that trucks in Ghana travelling
from Paga (on the northern border with Burkina Faso)
to Tema (on the Gulf of Guinea) take two to four days
under normal conditions, but a week or more delays
an estimated 10–20 percent of trucks. From a business
or investment perspective, a long, but certain transport
time may be preferable to a (potentially) shorter but
unpredictable transport time.

Usually the imprecision are expressed as fuzzy num-
bers. In this paper, the transportation time, supply and
demand is expressed as exponential fuzzy numbers,
which are unlimited range of fuzzy numbers; but the
generalized fuzzy numbers have a fixed range. An algo-
rithm is developed to obtain the optimal solution as
exponential fuzzy number. A numerical example is also
given. The rest of the paper is organized as follows.
Sections 2 and 3 introduce the concept of exponen-
tial fuzzy number and the general arithmetic operators.
Fuzzy Time Minimization Transportation problem for-
mulation is presented in Section 4 followed by solutions
in Section 5. Experimental illustrations are provided in
Section 5 and some conclusions are provided towards
the end.

2. Exponential fuzzy number

Definition 2.1. In general, a generalized fuzzy number
A is described as any fuzzy subset of the real line R,
whose membership function !A satisfies the following
conditions.

(1) !A is a continuous mapping from R to the closed
interval [0, 1].

(2) !A(x) = 0, −∞ < x ≤ C,
(3) !A(x) = L(x) is strictly increasing on [C, a],
(4) !A(x) = w, a ≤ x ≤ b,
(5) !A(x) = R(x) is strictly increasing on [b, d],
(6) !A(x) = 0, d ≤ x < ∞,

Where 0 < w ≤ 1, a, b, c and d are real numbers.

Y

w

O c a b d X

Fig. 1. Generalized LR type Fuzzy number A = (c, a, b, d; w)LR.

We denote this type of generalized fuzzy number as
A = (c, a, b, d; w)LR when w = 1, we denote this type of
generalized fuzzy number as A = (c, a, b, d)LR. Please
see Fig. 1 for a illustration.

However these fuzzy numbers always have a fixed
range as [c, d].

Definition 2.2. An exponential fuzzy number family
is unlimited range fuzzy number. We define its general
form as follows

fA(x) =






wAexp{−[(aA − x)/"A]}, x ≤ aA

wA, aA ≤ x ≤ bA

wAexp{−[(x − bA)/#A]}, bA ≤ x

where 0 < wA ≤ 1, aA, bA are real numbers and "A,
#A are positive real numbers. We denote this type of
generalized exponential fuzzy number as (A)E = (aA,
bA, "A, #A; wA)E. When wA = 1, we denote it as (A)E
= (aA, bA, "A, #A)E. Please see Fig. 2 for a illustration.

Result 2.3. Let (A)E = (aA, bA, "A, #A; wA)E be a gen-
eralized exponential number with 0 < wA ≤ 1 and "A,
#A are positive real numbers, aA, bA are real numbers
then the graded mean integration representation of A is
P(A) = aA + bA

2 + βA − αA
4

w

aA bA

Fig. 2. Exponential membership function.
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3. General arithmetic operators of exponential
fuzzy numbers

Suppose that (A1)E = (a1, b1, "1, #1, w1)E and
(A2)E = (a2, b2, "2, #2, w2)E are two generalized
exponential fuzzy numbers. Let w = min{w1, w2}
Some arithmetical results could be defined as:

1. The addition of (A1)E and (A2)E is

(A1 ⊕ A2)E = (a1 + a2, b1 + b2, "1+ "1, #1

+ #2; w)E

Where a1, b1, a2, b2 are all real numbers and "1,
"2, #1, #2 are positive.

2. The multiplication of (A1)E and (A2)E i

(A1 ⊗ A2)E = (a, b, ", #, w)E

where T = {a1a2, a1b2, b1b2}, T = {"1"2, "1#2,

#1#2}
and a = min T = kth element of T,

b = max T = lth element of T,

Then " = min T1 = kth element of T1,

# = max T1 = lth element of T1,

where 1 ≤ K ≤ 4, 1 ≤ l ≤ 4.

3. (−A2)E = (−b2, −a2, b2, a2; w2)E then

(A1 ' A2)E = (A1 ⊕ (−A2))E

= (a1 − b2, b1 − a2, "1 + #2, #1

+ "2; w)E

4.
(

1
A2

)

E
=

(
1
b2

,
1
a2

,
1

#2
,

1
"2

; w2

)

E

We have
(

A1

A2

)

E
=

(
A1 ⊗

(
1

A2

))

E

=
(

a1

b2
,

b1

a2
,

"1

#2
,

#1

"2
; w

)

E

where a1 b1, a2, b2, "1, "2, #1, #2 are all non-zero
positive real numbers.

5. Let m ∈ R+, (A)E = (a, b, ", #; w)E, then

(m ⊗ A)E = (ma, mb, m, m#; w)E,

If m ∈ R−, (A)E = (a, b, ", #; w)E, then

(m ⊗ A)E = (ma, mb, |m|", |m|#; w) E,

Definition 3.1. Let (A1)E = (a1, b1, "1, #1, w1)E and
(A2)E = (a2, b2, "2, #2, w2)E be two generalized expo-
nential fuzzy numbers, then (A1)E > (A2)E if and only
if (P(A1))E > (P(A2))E.

Definition 3.2. Let (A1)E = (a1, b1, "1, #1, w1)E and
(A2)E = (a2, b2, "2, #2, w2)E be two generalized expo-
nential fuzzy numbers, then (A1)E = (A2)E if and only
if ( P(A1))E = (P(A2))E.

4. Formulation of the fuzzy time minimization
transportation

Let us consider the standard balanced fuzzy trans-
portation problem with m sources Ai (with supplies
(ai)E), i ∈ I = 1, 2, . . . , m) and n destinations Bj (with
demands (bj)E), j ∈ J = {1, 2, . . . , n}. If (xij)E = the num-
ber of units moving from Ai to Bj, the feasible solution
(x)E and the set of feasible solution (X)E is

(X)E =




(x)E

/ ∑

j∈J

(xij)E = (ai)E, ∀ i ∈ I;

∑

i∈I

(xij)E = (bj)E, ∀ j ∈ J; P(xij)E ≥ 0, ∀(i, j)

}

(1)∑
(ai)E =

∑
(bj)E

i.e., P(ai)E = P(bj)E for i to 1 to m, j = 1 to n.
Suppose (tij)E = the time required for transporting all

(xij)E units using corresponding routes (i, j) for all i ∈
I and j ∈ J.

Transportation efficiency (F(x))E

=
∑

i∈I

∑

j∈J

(tij)E(xij)E (2)

Now we focus to the objective of minimizing the
fuzzy time of active transportation routes (i, j) as

(T(x))E =
∑

i∈I

∑

j∈J

(tij)Ehij (3)

where hij as auxiliary function show active and non
active transportation routes (activities)

hij =
{

1, if P(Xij)E > 0

0, if P(Xij)E = 0 (4)

This two types of measure of transportation effi-
ciency (2) & (3) will be called Variant A (linear
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function) and Variant B (nonlinear function) of the total
time transportation problem respectively.

5. Solution methodology

Let X(k) and X(k+1) are two basis neighbouring feasi-
ble solutions, where (Xij

(k))E is entering basis variable
and (Xis

(k))E is leaving basis variable for X(k).
X(k) contain: P(Xij

(k))E = 0 and P(Xis
(k))E > 0

X(k+1) contain: P(Xij
(k+1))E > 0 and P(Xis

(k+1))E = 0
there is P(Xij

(k+1))E = P(Xis
(k))E.

In moving from X(k) to X(k+1), the fuzzy total time
(T(x))E given as (3) will be changed with following
values:

(q(k)
ij )

E
= (tij)E − (tis)E (5)

The characteristic (qij)E is the change of the trans-
portation time in problem (3).

Then the solution X(k+1) has

(T(k+1))E = (T(k))E + (q(k)
ij )

E
(6)

Therefore the total time (T(k+1))E is determined by
values (qij

(k))E as follows:

P((T(k+1))E) =






>P(T(k))E if P(q(k)
ij )

E
> 0

=P(T(k))E if P(q(k)
ij )

E
= 0

<P(T(k))E if P(q(k)
ij )

E
< 0

(7)

Let (T∗)E be the minimum value of (T(x))E, (X∗)E
is the fuzzy optimal solution of (3).

(T∗)E = min
X




(T(x))E =
∑

i∈I

∑

j∈J

(tij)Ehij




 (8)

The above discussion makes possible to develop the
solving methods for defined transportation problem (3).

Also, the longest time on the separable active trans-
portation routes is

(t(x))E = max
P(xij)E>0

(tij)E.

The following algorithm finds the fuzzy optimal solu-
tion and minimum fuzzy total transportation time (3).

5.1. Algorithm

Step 1: Find the fuzzy initial basic feasible solution
(X(1))E by Fuzzy Vogel’s Approximation Method. Set
the number of iteration K = 1.

Step 2: Determine the indicators h(k)
ij of active

transportation routes P(x(k)
ij )E > 0 and the total time

(T(k))E = T(x(k))E.

hij =






1, if P(x(k)
ij )

E
> 0

0, if P(x(k)
ij )

E
= 0

(9)

(
T(k)

)

E
=

∑

i∈I

∑

j∈J

(tij)Eh(k)
ij (10)

Step 3: Determine the characteristics (q(k)
ij )E for all non-

basic variables x(k)
ij using (5). Use the changing path

of the basic solution (as in Stepping-Stone method)
and corresponding leaving basic variable, eg. (x(k)

is )E > 0
becomes (x(k+1)

is )E = 0, if entering basic variable would
be (x(k+1)

ij )E > 0.

Step 4: Check the optimality of total fuzzy time (3)
using (7). If all P(q(k)

ij )E ≥ 0 the optimal fuzzy solution
(X∗)E is found. Stop the procedure. Otherwise, go to
Step 5.

Step 5: Determine the next basic solution using enter-
ing variable (xij)E with minimum (q(k)

ij )E, regarding

P(q(k)
ij )E < 0. Set K = K + 1 and go to step 2.

6. Experimental illustration

Let us consider the following fuzzy time minimiza-
tion transportation problem with m = 4 sources Ai,
i ∈ I = {1, 2, 3, 4} and n = 5 destinations Bj, j ∈ J = {1,
2, 3, 4, 5}. The transportation time, supply and demand
which are expressed as exponential fuzzy numbers are
presented in Table 1. Each row corresponds to a sup-
ply point and each column to a demand point. The total
supply (61, 69, 65, 75, 0.7)E is equal to the total demand
(60, 70, 65, 75, 0.8). In each cell (i, j) top left corner
represents the time (tij)E required for transporting (xij)E
units from source Ai to destination Bj. The basic vari-
ables (xij)E are presented in the middle of corresponding
cells (Bold letters) and the increase (qij)E of time in
bottom right corner of each cell (i, j) for the non-basic
variable.

∑
(Ai)E = (61, 69, 65, 75; 0.7)E

∑
(Bi)E = (60, 70, 65, 75; 0.8)E

P(
∑

(Ai)E) = P(
∑

(Bi)E ) = 67.5
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Table 1
The transportation time, supply and demand expressed as exponential fuzzy numbers

Sources/ B1 B2 B3 B4 B5 Supply, ai
destinations

A1 (10, 12, 11, 14; 0.7)E (2, 4, 3, 5; 0.8)E (9, 11, 10, 12; 0.8)E (1, 3, 2, 5; 0.7)E (4, 6, 5, 7; 0.8)E (13, 15, 14, 17; 0.7)E
A2 (1, 3, 2, 5; 0.7)E (6, 8, 7, 9; 0.8)E (2, 4, 3, 5; 0.8)E (7, 9, 8, 11; 0.7)E (1, 1, 2, 3; 0.9)E (12, 14, 13, 15; 0.8)E
A3 (11, 13, 12, 14; 0.8)E (1, 3, 2, 5; 0.7)E (3, 5, 4, 6; 0.8)E (4, 6, 5, 7; 0.8)E (6, 8, 7, 9; 0.8)E (21, 23, 22, 25; 0.7)E
A4 (8, 10, 9, 11; 0.8)E (3, 5, 4, 6; 0.8)E (5, 7, 6, 9; 0.7)E (2, 4, 3, 5; 0.8)E (4, 6, 5, 7; 0.8)E (15, 17, 16, 18; 0.8)E
Demand, bj (14, 16, 15, 17; 0.8)E (9, 11, 10, 12; 0.8)E (14, 16, 15, 17; 0.8)E (9, 11, 10, 12; 0.8)E (14, 16, 15, 17; 0.8)E

Table 2
Solution obtained by fuzzy Vogel’s Approximation method

Sources/ B1 B2 B3 B4 B5 Supply, ai

destinations

A1 (10, 12, 11, 14; 0.7)E (2, 4, 3, 5; 0.8)E (9, 11, 10, 12; 0.8)E (1, 3, 2, 5; 0.7)E (4, 6, 5, 7; 0.8)E (13, 15, 14, 17; 0.7)E

(4, 8, 18, 19; 0.7)E (0, 6, 50, 51; 0.7)E (5, 9, 15, 15; 0.8)E (9, 11, 10, 12; 0.8)E (−4, 6, 77, 77; 0.7)E

A2 (1, 3, 2, 5; 0.7)E (6, 8, 7, 9; 0.8)E (2, 4, 3, 5; 0.8)E (7, 9, 8, 11; 0.7)E (1, 1, 2, 3; 0.9)E (12, 14, 13, 15; 0.8)E

(12, 14, 13, 15; 0.8)E (2, 6, 12, 12; 0.8)E (−2, 2, 8, 8; 0.8)E (4, 8, 13, 13; 0.7)E (−2, 0, 7, 5; 0.7)E

A3 (11, 13, 12, 14; 0.8)E (1, 3, 2, 5; 0.7)E (3, 5, 4, 6; 0.8)E (4, 6, 5, 7; 0.8)E (6, 8, 7, 9; 0.8)E (21, 23, 22, 25; 0.7)E

(5, 9, 19, 19; 0.8)E (5, 9, 39, 40; 0.7)E (14, 16, 15, 17; 0.8) (1, 5, 10, 9; 0.7)E (0, 4, 14, 14; 0.8)E

A4 (8, 10, 9, 11; 0.8)E (3, 5, 4, 6; 0.8)E (5, 7, 6, 9; 0.7)E (2, 4, 3, 5; 0.8)E (4, 6, 5, 7; 0.8)E (15, 17, 16, 18; 0.8)E

(0, 4, 30, 30; 0.8)E (−1, 3, 9, 9; 0.8)E (−1, 5, 11, 12; 0.7)E (−1, 3, 8, 7; 0.7)E (11, 17, 46, 48; 0.7)E

Demand, bj (14, 16, 15, 17; 0.8)E (9, 11, 10, 12; 0.8)E (14, 16, 15, 17; 0.8)E (9, 11, 10, 12; 0.8)E (14, 16, 15, 17; 0.8)E

The initial basic feasible solution is obtained by fuzzy
Vogel’s Approximation method is presented in Table 2.

(F(1))E = (2, 4, 3, 5; 0.8)E . (0, 6, 50, 51; 0.7)E + (1, 3, 2, 5; 0.7)E . (9, 11, 10, 12; 0.8)E

+ (4, 6, 5, 7; 0.8)E . (−4, 6, 77, 77; 0.7)E + (1, 3, 2, 5; 0.7)E . (12, 14, 13, 15; 0.8)E

+ (1, 3, 2, 5; 0.7)E . (5, 9, 39, 40; 0.7)E + (3, 5, 4, 6; 0.8)E . (14, 16, 15, 17; 0.8)E

+ (8, 10, 9, 11; 0.8)E . (0, 4, 30, 30; 0.8)E + (4, 6, 5, 7; 0.8)E . (11, 17, 46, 48; 0.7)E

= (88, 384, 1219, 1897; 0.7)E

(T(1))E = (2, 4, 3, 5; 0.8)E + (1, 3, 2, 5; 0.7)E + (4, 6, 5, 7; 0.8)E + (1, 3, 2, 5; 0.7)E + (1, 3, 2, 5; 0.7)E

+(3, 5, 4, 6; 0.8)E + (8, 10, 9, 11; 0.8)E + (4, 6, 5, 7; 0.8)

= (24, 40, 32, 51; 0.7)E

(t(1))E = max {(t12)E, (t14)E, (t15)E, (t21)E, (t32)E, (t33)E, (t41)E, (t45)E}

= (t41)E

= (8, 10, 9, 11; 0.8)E

The indicators of (dij
(1))E for (F(x))E the indicators

(qij
(1))E are shown in Table 3.

Since all P(dij)E ≥ 0, the optimal solution for (F(x))E
is reached.

Since (q25
(1))E = (−2, 0, 7, 5; 0.7)E, i.e.,

p(q25
(1))E < 0, (X(1))E is not optimal fuzzy solu-

tion of (T(x))E. Taking (x25)E as entering variable
(x21)E as leaving variable decrease (T(1))E = (24, 40,
32, 51; 0.7)E to (T(2))E = (24, 38, 32, 49; 0.7)E which
is shown in Table 4.

(T(2))E = (2, 4, 3, 5; 0.8)E + (1, 3, 2, 5; 0.7)E

+ (4, 6, 5, 7; 0.8)E + (1, 1, 2, 3; 0.9)E

+ (1, 3, 2, 5; 0.7)E + (3, 5, 4, 6; 0.8)E

+ (8, 10, 9, 11; 0.8)E + (4, 6, 5, 7; 0.8)E

= (24, 38, 32, 49; 0.7)E
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Table 3
Various indicators

Non basic cell Indicators dij
(1) for F(x) Indicators qij

(1) for T(x)

(x11
(1))E d11

(1) = (−2, 6, 34, 35, 0.7)E q11
(1) = (4, 8, 18, 19, 0.7)E

(x13
(1))E d13

(1) = (1, 9, 23, 24, 0.7)E q13
(1) = (5, 9, 15, 15, 0.8)E

(x22
(1))E d22

(1) = (5, 17, 38, 37, 0.7)E q22
(1) = (2, 6, 12, 12, 0.8)E

(x23
(1))E d23

(1) = (−3, 23, 42, 42, 0.7)E q23
(1) = (−2, 2, 8, 8, 0.8)E

(x24
(1))E d24

(1) = (7, 9, 39, 38, 0.7)E q24
(1) = (4, 8, 13, 13, 0.7)E

(x25
(1))E d25

(1) = (0, 6, 23, 21, 0.7)E q25
(1) = (−2, 0, 7, 5, 0.7)E

(x31
(1))E d31

(1) = (2, 8, 43, 42, 0.7)E q31
(1) = (5, 9, 19, 19, 0.8)E

(x34
(1))E d34

(1) = (0, 8, 18, 16, 0.7)E q34
(1) = (1, 5, 10, 9, 0.7)E

(x35
(1))E d35

(1) = (−1, 7, 22, 21, 0.7)E q35
(1) = (0, 4, 14, 14, 0.8)E

(x42
(1))E d42

(1) = (−3, 5, 21, 21, 0.8)E q42
(1) = (−1, 3, 9, 9, 0.8)E

(x43
(1))E d43

(1) = (−5, 7, 34, 33, 0.7)E q43
(1) = (1, 5, 11, 12, 0.7)E

(x44
(1))E d44

(1) = (−3, 5, 17, 20, 0.7)E q44
(1) = (−1, 3, 8, 7, 0.7)E

Table 4
Quality of solutions

Sources/ B1 B2 B3 B4 B5
destinations

A1 (10, 12, 11, 14; 0.7)E (2, 4, 3, 5; 0.8)E (9, 11, 10, 12; 0.8)E (1, 3, 2, 5; 0.7)E (4, 6, 5, 7; 0.8)E
(4, 8, 18, 19; 0.7)E (0, 6, 50, 51; 0.7)E (5, 9, 15, 15; 0.8)E (9, 11, 10, 12; 0.8)E (−4, 6, 77, 77; 0.7)

A2 (1, 3, 2, 5; 0.7)E (6, 8, 7, 9; 0.8) (2, 4, 3, 5; 0.8) (7, 9, 8, 11; 0.7)E (1, 1, 2, 3; 0.9)E
(0, 2, 5, 7; 0.7)E (2, 6, 12, 12; 0.8)E (−2, 2, 8, 8; 0.8)E (4, 8, 13, 13; 0.7)E (12, 14, 13, 15; 0.8)E

A3 (11, 13, 12, 14; 0.8)E (1, 3, 2, 5; 0.7)E (3, 5, 4, 6; 0.8)E (4, 6, 5, 7; 0.8)E (6, 8, 7, 9; 0.8)E
(5, 9, 19, 19, 0.8)E (5, 9, 39, 40, 0.7) (14, 16, 15, 17, 0.8) (1, 5, 10, 9, 0.7)E (0, 4, 14, 14, 0.8)E

A4 (8, 10, 9, 11; 0.8)E (3, 5, 4, 6; 0.8)E (5, 7, 6, 9; 0.7)E (2, 4, 3, 5; 0.8)E (4, 6, 5, 7; 0.8)E
(12, 18, 43, 45; 0.8)E (−1, 3, 9, 9; 0.8)E (−1, 3, 13, 14; 0.7)E (−4, 0, 10, 10; 0.8)E (−3, 5, 61, 61; 0.7)E

Table 5
Quality of solutions

Sources/ B1 B2 B3 B4 B5
destinations

A1 (10, 12, 11, 14; 0.7)E (2, 4, 3, 5; 0.8)E (9, 11, 10, 12; 0.8)E (1, 3, 2, 5; 0.7)E (4, 6, 5, 7; 0.8)E
(7, 11, 16, 16; 0.7)E (0, 6, 50, 51; 0.7)E (5, 9, 15, 15; 0.8)E (4, 14, 71, 73; 0.7)E (−7, 11, 137, 137; 0.7)E

A2 (1, 3, 2, 5; 0.7)E (6, 8, 7, 9; 0.8) (2, 4, 3, 5; 0.8) (7, 9, 8, 11; 0.7) (1, 1, 2, 3; 0.9)E
(−2, 2, 7, 7, 0.7)E (2, 6, 12, 12, 0.8)E (−2, 2, 8, 8, 0.8)E (4, 8, 13, 13, 0.7)E (12, 14, 13, 15, 0.8)E

A3 (11, 13, 12, 14; 0.8)E (1, 3, 2, 5; 0.7)E (3, 5, 4, 6; 0.8)E (4, 6, 5, 7; 0.8)E (6, 8, 7, 9; 0.8)E
(8, 12, 17, 16; 0.7)E (5, 9, 39, 40; 0.7)E (14, 16, 15, 17; 0.8) (1, 5, 10, 9; 0.7)E (0, 4, 14, 14; 0.8)E

A4 (8, 10, 9, 11; 0.8)E (3, 5, 4, 6; 0.8)E (5, 7, 6, 9; 0.7)E (2, 4, 3, 5; 0.8)E (4, 6, 5, 7; 0.8)E
(12, 18, 43, 45; 0.8)E (−1, 3, 9, 9; 0.8)E (1, 5, 11, 12; 0.7)E (−3, 5, 61, 61; 0.7)E (0, 4, 10, 10; 0.8)E

(t(2))E = max{(t12)E, (t14)E, (t15)E, (t21)E, (t32)E,

(t33)E, (t41)E, (t45)E}
= (t41)E

= (8, 10, 9, 11; 0.8)E

Since (q44
(2))E = (−4, 0, 10, 10, 0.8)E, i.e.,

P((q44
(2))E) < 0 (X(2))E is not optimal fuzzy solution

of (T(x))E. Taking (x44)E as entering variable (x45)E
as leaving variable decrease (T(2))E = (24, 38, 32, 49,
0.7)E to (T(3))E = (22, 36, 32, 47, 0.7)E which is shown
in Table 5.

Since all P(qij)E ≥ 0, the optimal solution of (T(x))E
is reached.

(T(3))E = (2, 4, 3, 5; 0.8)E + (1, 3, 2, 5; 0.7)E

+ (4, 6, 5, 7; 0.8)E + (1, 1, 2, 3; 0.9)E

+ (1, 3, 2, 5; 0.7)E + (3, 5, 4, 6; 0.8)E

+ (8, 10, 9, 11; 0.8)E + (2, 4, 3, 5, 0.8)E

= (22, 36, 32, 47; 0.7)E

(t(3))E = max{(t12)E, (t14)E, (t15)E, (t21)E, (t32)E,

(t33)E, (t41)E, (t45)E}

= (t41)E

= (8, 10, 9, 11; 0.8)E
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7. Conclusions

The time of transport might be significant factor in
several transportation problems. In this paper, an algo-
rithm is developed to solve total time minimization
in fuzzy transportation problem. Optimal solution is
obtained as exponential fuzzy number. This enables the
decision maker to obtain more informing results and
wider knowledge on the problem under consideration.
Using the proposed algorithm, it is found that:

(T(1))E = (24, 40, 32, 51, 0.7)E P((T(1))E = 36.75

(T(2))E = (24, 38, 32, 49, 0.7)E P((T(2))E = 35.25

(T(3))E = (22, 36, 32, 47, 0.7)E P((T(3))E = 32.75

Which shows the efficiency of the proposed algorithm.
In this paper, the input as well as the output is expressed
as exponential fuzzy numbers, so that the proposed
procedure preserves the fuzziness. The transportation
efficiency and the longest time on active transportation
routes are also obtained.
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