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Abstract—In this paper, a novel genetic algorithm based on 
immunity (GABI) on the basis of parallel genetic algorithms 
(PGA) is proposed in order to overcome some defects of them, 
such as premature and slow convergence rate. The global 
performance of the algorithm is improved by introducing 
immunity theory into PGA. This is revealed in the following 
two aspects. One is that the immune selection based on 
proposed adjustable geometric-progression rank-based 
selection can prevent the algorithm from premature. The other 
is that convergence rate can be accelerate by individual 
migration strategy between subpopulations based on immune 
memory mechanism. In this algorithm, the idea of multiple 
subpopulations evolution based on improved adaptive 
crossover and mutation is adopted. To be hybridized with the 
Powell method can further improve local searching 
performance of the algorithm. An example of layout design 
shows that GABI is feasible and effective. 
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I. INTRODUCTION 
Genetic algorithms are typical swarm intelligence 

techniques based on the mechanics of natural selection and 
natural genetics, which combines artificial survival of the 
fittest concept with genetic operations abstracted from 
nature [1-2]. Due to strong flexibility and robustness, 
genetic algorithms have been widely used in the solution of 
combinatorial optimization, production scheduling, machine 
learning, optimal control, image processing and so on. But 
there still exist some defects of genetic algorithms, such as 
premature and slow convergence rate. This has hampered 
further application and development of the algorithms to 
some extent. To overcome them, a novel genetic algorithm 
based on immunity (GABI) is proposed on the basis of 
parallel genetic algorithms (PGA) [3] through the 
introduction of immune principle, hybrid strategy and other 
improvement measures. It aims at solving complex 
engineering optimization problems (e.g. packing and layout 
design problems) more effectively.  

II. GENETIC ALGORITHM BASED ON IMMUNITY 

Immunity-based algorithms originated in 1990s have many 
good characteristics [4-6]. They can embody immune 
memory, extraction and inoculating efficient antibodies as 
well as antibody inhibition and promotion mechanism in the 
biological immune systems. So the genetic algorithms based 
on immunity can effectively prevent premature, accelerate 
convergence rate and improve overall performance of 
algorithms. Traditional immune genetic algorithms are 
almost all serial algorithms. In this paper, we introduce 
immune principle into parallel genetic algorithms and put 
forward following improvements on current immune 
algorithms.  

• We adopt the simple and easy Euclidean distance to 
calculate affinities between antibodies (i.e. 
individuals) for convenient to engineering design. 

• We present correction formula for calculating 
individual concentration and the immune selection 
operator based on proposed adjustable geometric- 
progression rank-based selection. 

• We propose the individual migration strategy 
according to the immune memory between 
subpopulations in GABI. 

Moreover, some other measures are taken in GABI for 
the purpose of further improving the proposed algorithm 
performance, such as multiple subpopulations evolution on 
the basis of improved adaptive crossover and mutation as 
well as the hybrid strategy with Powell method [7]. 

A. Adjustable Geometric-progression Rank-based Selection 
In traditional rank-based selection operator of genetic 

algorithms, a probability assignment table should be preset 
[1, 3]. But there is no deterministic rule for design of the 
table. And it is difficult for traditional rank-based model to 
make the selection probabilities of individuals adaptively 
changed along with evolution process. We introduce the 
concept of adjustable geometric-progression rank-based 
selection. It can overcome the above-stated shortcomings of 
traditional rank-based selection. 

There is one independent parameter in this operator, 
dominance coefficient λ. It denotes the ratio of the maximal 
individual selection probability Pmax to the minimal one Pmin 
within a generation, i.e. Pmax=λPmin. It numerically shows the 



superiority that the better individuals are reproduced into the 
next generation during selection operation and it is 
changeable along with algorithm evolution. In the early 
stage, lesser λ can maintain population diversity and prevent 
the algorithm from premature; while in the late stage, greater 
λ can benefit accelerating convergence. Let λ=f (K), K and f 
denote the generation number and an increasing function 
respectively. We adopt linear increasing function here. 
Assume that λmax and λmin denote the maximum and 
minimum of dominance coefficient respectively, then 
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where Kmax is the maximal generation number set in an 
algorithm. Our experiments show that λmax and λmin may be 
chosen in the interval [6, 15] and [1.5, 5] respectively. 

To calculate the selection probability of every 
individual, first of all, we should arrange all the individuals 
within a population in descending order based on their 
fitness values. Let Indi represent the ith individual within a 
population as well as Fi and Pi represent its fitness and 
selection probability respectively. There exist Indi (i=1,2, …, 
M) and Fi>Fi+1(i=1,2, , …,M-1). M is the population size. 
Suppose that the selection probability values of all the 
individuals form a geometric progression with common ratio 
q, 0<q<1. Assume that the first term P1 of this geometric 
progression is a as well as its general item Pn is aqn-1. 
Obviously, the sum of all the individual selection probability 
is 1, i.e. subtotal of this geometric progression 
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As above stated, according to the concept of dominance 
coefficient, there exists Pmax =λPmin. Here Pmax=P1=a, Pmin 
=PM = aqM-1, then 

a=λaqM-1                         (3) 
So we get 

q= M−1
1

λ                          (4) 
Substituting above formula into formula (2), it is easy to find 
that 

a=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−− M
M

M 11
1

11 λλ                 (5) 

Therefore we obtain 
pi=

1

1
1

11
1

11
−

−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

i

MM
M

M λλλ
 i=1,2,…,M  (6) 

In the process of selection, we firstly reproduce the best 
individual of current generation and put its copy into next 
generation directly based on elitist model. Then figure out 
selection probabilities of all individuals according to 
formula (6). Finally generate the remaining M-1 individuals 
of next generation by fitness proportional model. Compared 
with traditional rank-based selection, the advantage of 
proposed selection operator is that it can conveniently 
change the selection probabilities of individuals by changing 

dominance coefficient and is more adaptive to the algorithm 
run. 

B. Multiple Subpopulations Evolution and Individual 
Migration Strategy 

1) Improved adaptive crossover and mutation 
To prevent genetic algorithms from premature 

effectively as well as protect superior individuals from 
untimely destruction, Srinivas and Patnaik [8] proposed the 
concept of adaptive crossover and mutation. But according 
to these operators, crossover and mutation rate of the best 
individual among a population are both zero. It may lead to 
rather slow evolution in the early stage. To avoid its 
occurrence, it’s better to let the individuals possess due 
crossover and mutation rates, whose fitness values are equal 
or approximate to the maximal fitness. Therefore, based on 
[8], improved adaptive crossover rate Pc and mutation rate 
Pm are presented, see (7) and (8). 

( )
⎪
⎩

⎪
⎨

⎧

<ʹ′

≥ʹ′
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

ʹ′−
=

avg

avg
avg

FFk

FFkk
FF
FFkP

,

,lnln)(exp

3

13
max

max
1

c

     (7) 

( )
⎪
⎩

⎪
⎨

⎧

<

≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−

=

avg

avg
avg

FFk

FFkk
FF
FFkP

,

,lnln)(exp

4

24
max

max
2

m
    (8) 

where Fmax and Favg denote the maximal and average fitness 
of current population. F ʹ′denotes the greater fitness of the 
two individuals that take part in crossover operation. F 
denotes the fitness of the individual that take part in 
mutation operation. k1, k2, k3, k4 are constants. And there 
exist 0<k1, k2, k3, k4≤1.0, k1<k3, k2<k4. 

  2) Multiple subpopulations evolution 
Simulating the varied and colorful biological 

communities in nature, we adopt the idea of multiple 
subpopulations evolution [9] and classify all the 
subpopulations of proposed algorithm into four classes 
according to their crossover and mutation rates (Pc and Pm). 
Suppose that there is only one subpopulation within every 
class, named α, β, γ and δ subpopulation respectively. Their 
parametric features are shown in Table 1. 

TABLE 1. PARAMETRIC FEATURES OF FOUR CLASSES OF SUB-POPULATIONS 

Subpopulation Class α Class β Class γ Class δ 

Crossover rate k1=0.8 k1=0.5 k1=0.2 k1=0.1 
k3=1.0 k3=0.8 k3=0.5 k3=0.2 

Mutation rate k2=0.3 k2=0.2 k2=0.1 k2=0.05 
k4=0.4 k4=0.3 k4=0.2 k4=0.1 

Initial fitness Minimal Medium Greater Maximal 

According to their properties of initial fitness as well as 
crossover and mutation rates, we can see that the fitness 
values of initial individuals of class α subpopulation are the 
minimal among those of subpopulations of the four classes. 
But this subpopulation has the highest Pc and Pm, so it is 
easier for it to explore the new parts of solution space and 
enhance the possibility of discovering global optima. As 
well as, it can guard against premature convergence. The 



initial individuals of class γ subpopulation are with relatively 
greater fitness values. Because this subpopulation has 
relatively lower Pc and Pm, it is easier for it to keep the 
stability of individuals. The function of class γ 
subpopulation is mainly to consolidate local search. Class β 
subpopulation is a transitional subpopulation. And class δ 
subpopulation is also called memory subpopulation for it 
corresponds to memory cells in immune systems. It is made 
up of the initial individuals with the maximal fitness values 
among those of subpopulations of the four classes. In the 
process of evolution, this subpopulation saves the superior 
individuals obtained by subpopulations of the 
above-mentioned other three classes. At the same time, class 
δ subpopulation is also evolving itself. But its Pc and Pm are 
the lowest. The function of class δ subpopulation is to 
simulate the immune memory function and keep the stability 
and diversity of the superior individuals. 

After random initialization, GABI arranges all the 
generated initial individuals according to their fitness values. 
The initial individuals with the maximal fitness values are 
allocated to class δ subpopulation; the initial individuals 
with relatively greater fitness values are allocated to class γ 
subpopulation; the initial individuals with the minimal 
fitness values are allocated to class α subpopulation; the rest 
of initial individuals are allocated to class β subpopulation. 

  3) Individual migration strategy based on immune 
memory between subpopulations 

At intervals of given migration cycle, GABI copies the 
current best individuals in class α, β and γ subpopulations 
and remembers (saves) them into class δ subpopulation, then 
update this memory subpopulation (eliminate the inferior 
individuals from it) and keep the same subpopulation size. 
Meanwhile, simulating inoculation, GABI selects some 
individuals from the memory subpopulation and make them 
migrate to class α, β and γ subpopulations respectively. The 
migration individuals will replace the inferior individuals of 
the three subpopulations respectively as well. This migration 
strategy can accelerate the convergence rate of the 
algorithm.  

In addition, we set a generation control parameter, 
denoted by Km. When generation number K is multiples of 
Km, GABI merges all the subpopulations together and 
arrange all the individuals according to their fitness values. 
Then GABI reallocates individuals to every subpopulation 
respectively according to their fitness values. 

C. Antibody Concentration and Immune Selection 

1) Antibody affinity and antibody concentration 

Here Antibodies are exactly individuals. They have the 
same concept and all represent solutions of a given problem. 
Antibody affinity ayvw defined as follows indicates similar 
extent between antibody v and antibody w. 

[ ])2(11 Hayvw +=                    (9) 
The range of ayvw is within ]1,0( . If the value ayvw is 

higher then the antibody v is more similar with antibody w. 
At present, H (2) in formula (9) is mostly calculated by 
average information entropy based on antibody v and w. In 
fact, as above stated, antibody affinity denotes similar extent 
between antibodies. In other words, H (2) represents the 
distance between two antibodies. It can be calculated by 
average information entropy and also can be calculated by 
other methods, if two conditions are satisfied. One is H (2) 
≥0, and H (2) =0 indicates that the genes of two antibodies 
are exactly the same. The other is that greater differences 
between genes of two antibodies can lead to greater value of 
H (2). In order to simplify the calculation and be easy for 
engineering realization, we adopt Euclidean distance to 
calculate affinities. Let antibody v=(v1, v2,…, vn) and 
antibody w=(w1, w2,…,wn), then 
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Suppose that M denotes the population size. 
Concentration cv of antibody v in its population is usually 
defined as follows presently. 
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Obviously there exists cv� ]1,0( . The concept of antibody 
concentration is applied to the following immune selection. 
In order to avoid oscillation during the later period of 
proposed algorithm and facilitates algorithm convergence, 
antibody concentration cv should tend to 1 ultimately along 
with increase in the value of generation number K. 
Therefore, we present a correction for (11) as follows. 
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where β is a system parameter and usually set β=0.5. 

  2) Immune selection 

The procedure for immune selection of GABI can be 
described below. 

• Calculate the fitness value of every antibody 
(individual) in the population, i.e. Fv, v=1,2,…, M; 

• According to the above formula (12), calculate the 
concentration of every antibody in the population, 
i.e. cv, v=1,2,…, M; 

• Calculate the adjusted fitness 
vF ʹ′  of every antibody 

in the population and there exist 
vF ʹ′=Fv /cv, v=1,2,…, 

M; 
• Generate the next population based on adjusted 

fitness values by above proposed adjustable 
geometric-progression rank-based selection. 

Compared with traditional selection operators, the 
above immune selection can reflect self regulation function 
of antibody inhibition and promotion in immune systems. 
Namely the antibodies with greater fitness values and lower 



concentration will be promoted and their survival 
probabilities become larger. On the contrary, the antibodies 
with lower fitness values and higher concentration will be 
inhibited and their survival probabilities become smaller. 
Consequently proposed immune selection can effectively 
maintain population diversity and prevent GABI from 
premature convergence. 

D. Hybrid Strategy 
To further improve local search ability of the algorithm, 

it is necessary to apply hybrid strategy. Taking the matching 
problem into consideration, we hybridize Powell method 
with proposed algorithm. Powell method possesses 
relatively fast local convergence rate and doesn’t involve 
derivative information. Allowing for the problem of 
computational efficiency, the hybrid algorithm should give 
full play to the global search ability of genetic algorithm in 
the early stage, while to the local search ability of Powell 
method in the late stage. Therefore in GABI, we set 
parameter KP and select NP individuals as initial points to 
search CP turns by Powell method at intervals of KP 
generations. To enhance the local search ability of GABI in 
the late stage and accelerate convergence rate, NP and CP are 
set in direct proportion to generation number K in the 
proposed algorithm. 

E. The Procedure of Proposed Algorithm 
Flow chart of the proposed genetic algorithm based on 

immunity (GABI) is shown in Fig. 1. 
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Figure1. Flow chart of the proposed GABI 

III. NUMERICAL EXAMPLE 
The engineering background of this example is the 

packing and layout design of printed circuit boards (PCB) 
and plant equipments. Assume that there are n objects 
named A1, A2, …, An and the weight between Ai and Aj is wij, 
i, j=1,2,…, n. Try to locate each object such that the value of 
expression S+ λwC of a layout scheme is as small as possible 

and the constraints of no interference between any two 
objects are satisfied. Here S is the area of enveloping 
rectangle of a layout scheme. λw is a weight factor and C is 
the sum of the products of dij multiplied by wij, i.e. 
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where dij is the distance between object Ai and Aj. 
Suppose that (xi, yi) is the coordinates of the center of 

the object Ai. The mathematical model for this problem is 
Find X = (xi, yi)T, i∈{1,2, … , n} 

      min f (X)= S+ λwC                     (14) 
       s.t. intAi ∩ intAj=Ø   i ≠ j,  i, j∈{1,2, … , n} 
where intAi presents the interior of object Ai. 

Quoted from [10], 15 circular objects are contained in 
this example. Let λw=1. The radii of objects are 
r1=r3=r10=12 mm, r2=r4=3 mm, r5=r13=r14=9 mm, 
r6=r12=r15=10 mm, r7=7 mm, r8=8 mm, r9=4 mm, 
r11=6mm. The weight matrix is 
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   (15) 
To compare the performance of GABI with that of PGA 

objectively, we adopt GABI and PGA that possesses four 
subpopulations (same as GABI) to solve this example 
respectively and subpopulation sizes of both algorithms are 
identical. Moreover, any relevant contents of the two 
algorithms, such as encoding scheme, fitness function and 
migration cycle, that may be identical are selected as the 
same. The migration strategy of PGA we adopted in this 
paper is as follows. At intervals of given migration cycle, 
PGA copies several superior individuals of every 
subpopulation, sends to another arbitrarily taken 
subpopulation and replaces the inferior individuals of the 
subpopulation. All computation is performed on PC with 
CPU at 2.1GHz and RAM size of 2GB. Both algorithms are 
calculated 20 times respectively. The best layouts among 20 
optimal results by them are in Table 2 and the corresponding 
best geometric layout patterns are shown in Fig. 2. For the 
best layout by PGA, S, C and computation time t are 
5884.01mm2, 91235.20 and 25.31s; for the best layout by 
GABI, S, C and t are 5602.03mm2, 80627.64and 23.56s. 
When obtained S≤5884.01mm2, C≤91235.20 by GABI, it 
takes 19.93s. So in the sense of best results, to reach the 
same precision, GABI reduces the cost of time by 21.26% 
compared with PGA. Table 3 lists relevant average values of 



20 optimal results of the example obtained by two 
algorithms. In Table 3, ΔS and K represent the interference 
area and elapsed generation number for an optimal result 
respectively. Table 3 shows that compared with PGA, on an 
average, GABI reduces S, C and elapsed generation number 
K by 6.73%, 10.94% and 25.36%, i.e. from 6231.91mm2 to 
5812.43mm2, from 96744.74 to 86163.08 and from 698 to 
521 respectively. 

TABLE 2. BEST LAYOUTS OF THE EXAMPLE BY THE TWO ALGORITHMS 
 

No. The best layout by PGA The best layout by GABI 
xi/mm yi/mm xi/mm yi/mm 

1 9.45 21.27 5.25 -3.35 
2 -11.88 -9.29 -18.34 2.30 
3 -31.27 12.15 -31.85 -22.46 
4 -0.63 2.32 23.27 24.31 
5 -11.51 20.96 17.62 13.77 
6 -16.89 -23.30 36.84 -24.30 
7 -22.77 -7.35 -10.04 7.88 
8 -13.02 4.03 1.16 17.89 
9 -2.08 9.59 28.90 20.22 

10 15.17 -1.96 29.20 -3.65 
11 -3.46 -6.17 -13.20 20.46 
12 35.12 -11.20 -0.74 -24.45 
13 19.87 -22.83 -14.26 -11.03 
14 1.97 -20.13 18.07 -21.43 
15 33.31 10.48 -27.03 11.93 
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Figure 2. The obtained best layout patterns of the example 

by PGA (left) and GABI (right) 

TABLE 3. COMPARISON OF AVERAGE VALUES OF 20 OPTIMAL RESULTS OF 
THE EXAMPLE BY THE TWO ALGORITHMS  

Algorithms S /mm2 C ΔS /mm2 K 
PGA 6231.91 96744.74 0 698 
GABI 5812.43 86163.08 0 521 

IV. CONCLUSIONS 
To overcome defects of PGA, we take several measures 

on it and propose a novel algorithm named GABI. These 
measures involve introducing immune selection operator 
based on proposed adjustable geometric-progression 
rank-based selection, hybrid strategy, adaptive multiple 
subpopulations evolution and individual migration strategy 
based on immune memory. The numerical example of layout 
design shows that GABI is feasible and effective. It is really 
superior to PGA in accuracy and convergence rate. Because 
proposed GABI is a universal algorithm, it also can be 
adopted to solve other complex optimization problems. In 
the future, we plan to investigate more hybrid methods 
[11-16] to improve the efficiency of the current approach. 
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