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Hybrid Genetic: Particle Swarm Optimization
Algorithm

D.H. Kim, A. Abraham, and K. Hirota

Summary. This chapter proposes a hybrid approach by combining a Euclidian distance (EU)
based genetic algorithm (GA) and particle swarm optimization (PSO) method. The perfor-
mance of the hybrid algorithm is illustrated using four test functions. Proportional integral
derivative (PID) controllers have been widely used in industrial systems such as chemical pro-
cess, biomedical process, and in the main steam temperature control system of the thermal
power plant. Very often, it is difficult to achieve an optimal PID gain without prior expert
knowledge, since the gain of the PID controller has to be manually tuned by a trial and er-
ror approach. Using the hybrid EU–GA–PSO approach, global and local solutions could be
simultaneously found for optimal tuning of the controller parameters.

7.1 Introduction

During the last decade, genetic algorithm-based approaches have received increased
attention from the engineers dealing with problems, which could not be solved using
conventional problem solving techniques. A typical task of a GA in this context is
to find the best values of a predefined set of free parameters associated with either
a process model or a control vector. A possible solution to a specific problem can
be encoded as an individual (or a chromosome), which consists of group of genes.
Each individual represents a point in the search space and a possible solution to the
problem can be formulated. A population consists of a finite number of individu-
als and each individual is decided by an evaluating mechanism to obtain its fitness
value. Using this fitness value and genetic operators, a new population is generated
iteratively which is referred to as a generation. The GA uses the basic reproduction
operators such as crossover and mutation to produce the genetic composition of a
population. Many efforts for the enhancement of conventional genetic algorithms
have been proposed. Among them, one category focuses on modifying the structure
of the population or on the individual’s role while another category is focused on
modification/efficient control of the basic operations, such as crossover or mutation,
of conventional genetic algorithms [9].

The proportional integral derivative (PID) controller has been widely used ow-
ing to its simplicity and robustness in chemical process, power plant, and electrical
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systems [1]. Its popularity is also due to its easy implementation in hardware and
software. However, using only the P, I,D parameters, it is often very difficult to con-
trol a plant with complex dynamics, such as large dead time, inverse response, and
for power plants having a high nonlinear characteristics [5]. Recently, there has been
a growing interest in the usage of intelligent approaches such as fuzzy inference sys-
tems, neural network, evolutionary algorithms, and their hybrid approaches for the
tuning of a PID controller [1–4, 6, 7].

This chapter introduces a hybrid approach consisting of genetic algorithm and
particle swarm optimization (PSO) algorithm. To obtain an advanced learning
structure, there are two processing steps in the proposed method. In the first step,
Euclidean distance is used to select the global data for crossover and mutation
operators to avoid local minima, and to obtain fast convergence. In the second step,
in order to enhance the learning efficiency of GA, PSO strategy is applied. The
proposed approach focuses on the advantage of PSO into the mutation process of
GA, for improving the GA learning efficiency. A PSO like search proceeds through
the problem space, with the moving velocity of each particle represented by a
velocity vector. Therefore, global and local optimal solution can be simultaneously
achieved and the most appropriate parameter of the PID controller can be selected
for the given plant and system [11].

We first illustrate the performance of the proposed hybrid approach using
four test functions. Further the performance of hybrid EU–GA–PSO approach is
validated by tuning a PID controller of a automatic voltage regulator (AVR). The
chapter is organized as follows: In Sect. 7.2, we introduce the hybrid approach using
Euclidean distance-based genetic algorithm and PSO algorithm with some simple
illustrations. Detailed experiment results for function optimization are illustrated in
Sect. 7.3 followed by PID controller tuning in Sect. 7.4. Some Conclusions are also
provided in the end.

7.2 Hybrid Approach Using Euclidean Distance Genetic
Algorithm and Particle Swarm Optimization Algorithm

7.2.1 Particle Swarm Optimization Algorithm

The PSO algorithm conducts search using a population of particles which correspond
to individuals in a genetic algorithm [8, 10]. A population of particles is initially
randomly generated. Each particle represents a potential solution and has a position
represented by a position vector. A swarm of particles moves through the problem
space, with the moving velocity of each particle represented by a velocity vector. At
each time step, a function representing a quality measure is calculated by using as
input. Each particle keeps track of its own best position, which is associated with
the best fitness it has achieved so far in a vector. Furthermore, the best position
among all the particles obtained so far in the population is kept track as output.
In addition to this global version, another local version of PSO keeps track of the
best position among all the topological neighbors of a particle. At each time step, by
using the individual best position, and global best position, a new velocity for particle
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is updated. The computation for PSO is easy and adds only a slight computational
load when it is incorporated into the conventional GA. Furthermore, the flexibility
of PSO to control the balance between local and global exploration of the problem
space helps to overcome premature convergence of elite strategy in GA, and also
enhances search ability.

7.2.2 Genetic Algorithm with Euclidean Data Distance

When individuals in a genetic algorithm are differentiated to search for optimal solu-
tions, there is a high chance for obtaining local optimal solutions. Using the conven-
tional GA or PSO approach, optimal solutions are obtained mostly with some initial
differentiated data and there is a high possibility for obtaining local optimal solu-
tions. The proposed approach uses data points with the longest Euclidean distance
for crossover process to avoid such local optimization. The idea is to obtain global
solutions by considering the entire search space (all the data points). We consider the
Euclidean distance for the function

F1(x) =
2

∑
i=1

x2
i (7.1)

with the initial conditions as depicted in Table 7.1.
Figures 7.1 and 7.2 illustrate the relationship between objective function and

the number of generations by a GA. Table 7.1 illustrates the initial conditions and
Table 7.2 shows the Euclidean distance when applied to (7.1) and the relationship
between the optimal value, average value, maximum and minimum values of the
objective function.

As per proposed method, all the data points have a higher chance to be included
in the search and thus a local solution could be avoided. The distance between two
points on n search space is defined by

distance =
√

(x1 − y1)2 +(x2 − y2)2 + · · ·+(xn − yn)2. (7.2)

To further demonstrate the performance, the Himmelblau function F2(x) is used:

F2(x) = (x2
1 + x2 −11)2 +(x1 + x2

2 −7)2. (7.3)

The contour to obtain optimal solution by crossover using a conventional GA is
illustrated in Fig. 7.3. Data points are selected by

Table 7.1. Initial conditions for the performance test

Function Definition No. of individuals No. of iterations

xL
i xU

i

F1(x) = ∑2
i=1 x2

i −5.12 5.11 60 100
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Fig. 7.1. Performance illustrating optimal objective function and generations for the test func-
tion F1 using GA

Fig. 7.2. Performance illustrating average objective function and number of generations for
the test function F1 using GA

Table 7.2. Performance results using the Min–Max method

x1 x2 Optimal value of Average value of
objective function objective function

Max 1.0885e−009 7.1709e−010 1.6991e−018 3.5601e−013

Min −2.2190e−011 1.0253e−009 1.0518e−018 3.7901e−013

A(x1,y1)⊕B(x1,y1) ⇒ A
′
,B

′ (
x
′
1|max(x1,y1)

min(x1,y1) ,y
′
1|max(x1,y1)

min(x1,y1)

)
(7.4)

As evident from Fig. 7.3, there is an optimal solution in only one place and
optimal solution is obtained after 200 generations. Contour plot (Fig. 7.4) obtained
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Fig. 7.3. Contour plot showing solutions for F2 using Euclidean distance-based genetic
algorithm

by the proposed genetic algorithm based on Euclidean distance shows that there are
optimal solutions in both local and global spaces and its solution is obtained after 50
generations.

The influence of mutation in GA or in a hybrid system of PSO and GA has been
studied to speed up the running time to obtain optimal solutions [12]. We used the
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Fig. 7.4. Contour plot showing solutions for F2 using genetic algorithm

position and speed vector of PSO as follows:

v(t+1)
f ,g = wv(t)

j + c∗1rand()∗
(

pbest j,g − k(t)
j,g

)
+ c∗2Rand()∗

(
gbestg − k(t)

j,k

)
j = 1,2, . . . ,n g = 1,2, · · · ,m

k(t+1)
j,g = k(t)

j,g + v(t+1)
j,g ,kmin

g ≤ k(t+1)
j,g ≤ kmax

g

(7.5)

where n is the number of agents in each group; m the number of members in each

group; t the number of reproduction steps; v(t)
j,g the speed vector of agent j in re-

production step of tth, V min
g ≤ V (t)

j,g ≤ V max
g k(t)

j,g the position vector of agent j in
reproduction step of tth; w the weighting factor; c1,c2 the acceleration constant;
rand(),Rand() the random value between 0 and 1; pbest j the optimal position vector
of agent j; and gbest is the optimal position vector of group.

The value of position vector and speed vector is determined by the acceleration
constants c1, c2 . If these values are large, each agent moves to the target position
with high speed and abrupt variation. If vice versa, agents wander about target place.
As weighting factor w is for the search balance of the agent, the value for optimal
search is given by

w = wmax − wmax −wmin

itermax
× iter, (7.6)
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Fig. 7.5. Individual structure combined by PSO and GA

where Wmax is the maximum value of W (0.9); Wmin the minimum value of W (0.4);
itermax the number of iterations; and iter is the number of iterations at present.

The speed vector is limited by V min
g ≤ V (t)

j,g ≤ V max
g . In this research, the value

of speed vector for each agent is limited to 1/2 to avoid abrupt variation of position
vector. Calculation process for each step is given in Fig. 7.5

[Step 1] Initialize all GA variables.
[Step 2] Initialize all PSO variables.
[Step 3] Calculate affinity of each agent for condition of optimal solution of GA.
At this point, optimal position condition of PSO is introduced into the GA loop.
[Step 4] Arrange the group of PSO and agents in GA as shown in Fig. 7.6.
[Step 5] Update position vector pbest and speed vector gbest.
[Step 6] Perform crossover in GA using Euclidian distance and position vector
of PSO.
[Step 7] Perform mutation in GA.
[Step 8] If condition of GA is satisfied with the target condition (iteration number
or target value), reproduction procedure is halted. Otherwise, it goes to step 3. In
Fig. 7.5, IG, ED, PV, and SV refers to initial group, Euclidean distance, position
vector, and speed vector, respectively.

In this paper, initially, position of individuals are calculated by the Euclidean
distance-based method and then mutation and crossover are performed to improve
the running speed and to obtain global optimal solutions.

7.3 Experiment Results

7.3.1 Performance Analysis for Different Particle Sizes

To prove the learning structure suggested in this paper, function

F1(x) =
2

∑
i=1

x2
i

is used as an example. Figure 7.7 illustrates the contour characteristics of the func-
tion.
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Fig. 7.6. Flowchart of GA–PSO algorithm

Fig. 7.7. Contour of function F1



7 Hybrid Genetic: Particle Swarm Optimization Algorithm 155

Fig. 7.8. Relationship between the objective function and number generations using different
PSO settings

Figure 7.8 represents the relationship between objective function and number
of GA generations for the number of particles in PSO and Fig. 7.9 illustrates the
characteristics between the existing GA and the proposed EU–GA–PSO approach.
As evident, the GA–PSO converges much faster than the conventional GA approach.

Table 7.3 depicts the relationship between variation of function and differentia-
tion rate of PSO. When the differentiation rate is smaller, the convergence speed is
faster but at the final step, the differentiation rate is larger and the convergent speed
is faster.

7.3.2 Performance Characteristics of Hybrid GA–PSO Algorithm

Figure 7.10 illustrates the performance between GA and Hybrid GA–PSO. For com-
parison of both systems, test function, F1(x) and Euclidean data distance are used.
Particle size for comparing the different characteristics is selected as 10. As evi-
dent from Fig. 7.10, after the first step, the conventional GA has faster convergence
speed but during the final stages, GA–PSO has more stable speed because GA–
PSO searches for optimal solution by incorporating position and direction for search
(Tables 7.4 and 7.5).

.

.
7.3.3 Importance of GA Parameter Selection

In GA, in order to transfer gene information of parents or grandparents to off-
springs effectively, differentiation is carried out through different selection schemes
namely RemSel (Remainder stochastic Sample with Replacement Selection), Uni-
vSel (Stochastic Universal Sampling Selection), and RwSel (Roulette Wheel Selec-
tion). Performance results are illustrated in Figs. 7.10–7.17 and initial condition of
the considered four test functions are presented in Table 7.6.
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Fig. 7.9. Comparison between the conventional GA and GA–PSO

Table 7.3. Performance for different particle sizes

Particle size x1(1.0e−006∗) x2(1.0e−006∗) The value of optimal The value of average
objective function objective function

(1.0e−012∗) (1.0e−008∗)

5 0.3105 −0.4933 0.3398 0.0067
10 −0.2799 −0.1014 0.0886 0.1438
20 0.1655 0.3842 0.0550 0.0225
30 0.0325 0.0197 0.0014 0.0070

In Table 7.6, No. of IDs refer to the number of individuals and No. of Re; the
number of reproduction steps, respectively.

For detailed illustrations, we used the following four test functions:

(1) Square function

F1 =
3

∑
1

x2
i .
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Fig. 7.10. Comparison between the conventional GA and GA–PSO for F1

Table 7.4. Performance comparison for hybrid GA–PSO algorithm

x1(1.0e−006∗) x2(1.0e−006∗) The value of optimal The value of average
objective function objective function

GA–PSO 0.0325 0.0197 1.4408e−015 0.0700
GA −0.2249 0.2585 1.1741e−013 0.1962

Figures 7.10 and 7.11 depict the performance comparison between the conven-
tional GA and the proposed GA–PSO approaches.

(2) Rosenbrock function

F2(x) = 100(x2
1 − x2)2 +(1− x1)2.

Figures 7.12 and 7.13 illustrate how the optimal solutions are obtained for the
Rosenbrock function and Table 7.7 depicts the empirical results. As evident,
GA–PSO has better convergence in the search for optimal solutions.
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Table 7.5. Performance comparison for F1(x)

Average value of
x1(1.0e−005∗) x2(1.0e−005∗) Optimal value of objective function

objective function (1.0e−009∗)

GA–PSO −0.0001 −0.0001 2.0656e−018 3.7940e−014
GA-RemSel −0.8788 −0.0064 7.7228e−011 3.3378e−008
GA-UnivSel −0.3056 0.1973 1.0706e−010 2.2349e−008
GA-RwSel 0.3535 −0.9724 1.3233e−011 5.3544e−008

Table 7.6. Search space of test functions and initial conditions

Definition No. No. Particle
Function

xL
i xU

i of IDs of Re size

F1(x) = ∑2
i=1 x2

i −5.12 5.11
F2(x) = 100(x2

1 −x2)2 +(1−x1)2 −2.048 2.047
F3(x) = (x2

1 +x2 −11)2 +(x1 +x2
2 −7)2 −6 6

60 100 10

F4(x) = (0.002+∑25
j=1( j +∑2

i=1(xi −ai j)6)−1)−1 −65.536 65.535

Fig. 7.11. Comparison between different selection schemes for F1

(3) Himmelblau function

F3(x) = (x2
1 + x2 −11)2 +(x1 + x2

2 −7)2.

Figures 7.14 and 7.15 depict how the proposed method could fasten the
convergence for the Himmelblau function. The GA–PSO method depicts better
optimal solutions after 5 generations. On the other hand, after 50 generations,
GA–PSO represents both optimal solutions (local optimal and global optimal)
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Fig. 7.12. Comparison between the conventional GA and GA–PSO for F2

Fig. 7.13. Comparison between different selection schemes for F2
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Table 7.7. Performance Comparison for F2(x) using different selection schemes

Optimal value of Average value ofx1 x2
objective function objective function

GA–PSO 1.0026 1.0052 6.7405e−006 2.0807

GA-RemSel 0.9720 0.9447 7.8523e−004 3.0355

GA-UnivSel 0.9612 0.9243 0.0015 5.4145

GA-RwSel 0.8084 0.6540 0.0367 1.2021

Fig. 7.14. Comparison between the conventional GA and GA–PSO for F3
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Fig. 7.15. Comparison between different selection schemes for F3

Fig. 7.16. Comparison between the conventional GA and GA–PSO for F4



162 D.H. Kim et al.

Fig. 7.17. Comparison between different selection schemes for F4

Vt(s)Vref (s) kp+ +kd s
ki

s

PID controller Amplifier Exciter Generator

1
0.01s+1
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0.1s+1

1
0.4s+1

1
s+1

+
−

Fig. 7.18. Block diagram of an AVR system with a PID controller

but it reveals that it is possible to have a local optimal solution because the
conventional method has optimal solution at one location.

(4) Fox hole function

F4(x) =

⎛
⎝0.002 +

25

∑
j=1

(
j +

2

∑
i=1

(xi −ai j)6

)−1
⎞
⎠

−1

.

Figures 7.16 and 7.17 illustrate the performance results for the Fox hole function.

7.4 PID Controller Tuning for the AVR System

The transfer function of PID controller of the AVR system is given by

G(s) = kp +
ki

s
+ kds (7.7)

and block diagram of the AVR system is shown in Fig. 7.18. The performance index
of control response is defined by
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minF(kp,ki,kd) =
e−β ts/max(t)(

1− e−β
) |1− tr/max(t)| + e−β Mo+ ess

=
e−β (ts + α2|1− tr/max(t)Mo|)

(1− e−β |1− tr/max(t)|) + ess

=
e−β (ts/max(t)+ αMo)

α
+ ess

(7.8)

where kp,ki,kd is the parameters of PID controller; β the weighting factor; Mo the
overshoot; ts the settling time (2%); ess the steady-state error and t the desired settling
time.

In (7.8), if the weighting factor, β increases, rising time of response curve is
small, and when β decreases, rising time is big.

Performance criterion is defined as Mo = 50.61%, ess = 0.0909, tr = 0.2693(s),
.
.
.

ts = 6.9834(s) and the following parameter settings were used.
In PSO, the number of each agent is fixed as 10 with the number of groups as 5:

Weighting factor: wmax = 0.9,wmin = 0.4
Restriction of velocity vector:

V max
kρ = Kmax

ρ /2,V max
ki

= Kmax
i /2,V max

kd
= Kmax

d /2,V min
kρ ,ki ,kd

= −V max
kρ ,ki,kd

Acceleration constant:c1 = 2,c2 = 2.

Terminal voltage step response of an AVR system without controller is given in
Fig. 7.19 and the characteristics of the AVR system obtained due to the variation of β
using GA, PSO, and hybrid EU–GA–PSO approach is illustrated in Figs. 7.20–7.32.
Empirical results are summarized in Tables 7.8–7.9.
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Fig. 7.19. Terminal voltage step response of an AVR system without controller
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Fig. 7.20. Terminal voltage step response of an AVR system with a PID controller (β = 0.5,
generations = 50)

Fig. 7.21. Terminal voltage step response of an AVR system with a PID controller (β = 0.5,
generations = 100)

Fig. 7.22. Terminal voltage step response of an AVR system with a PID controller (β = 0.5,
generations = 150)
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Fig. 7.23. Terminal voltage step response of an AVR system with a PID controller (β = 1.0,
generations = 10)

Fig. 7.24. Terminal voltage step response of an AVR system with a PID controller (β1.0,
generations = 50)

Fig. 7.25. Terminal voltage step response of an AVR system with a PID controller (β = 1.0,
generations = 100)
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Fig. 7.26. Terminal voltage step response of an AVR system with a PID controller (β=1.0,
generations=150)

Fig. 7.27. Terminal voltage step response of an AVR system with a PID controller (β=1.5,
generations=10)

Fig. 7.28. Terminal voltage step response of an AVR system with a PID controller for different
β values and for 25 generations
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Fig. 7.29. Terminal voltage step response of an AVR system with a PID controller (β=1.5,
generations=50)

Fig. 7.30. Terminal voltage step response of an AVR system with a PID controller (β=1.5,
generations= 100)

Fig. 7.31. Terminal voltage step response of an AVR system with a PID controller (β=1.5,
generations= 150)
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Fig. 7.32. Comparison of the best objective values using all the methods (β = 1.5,
generations = 200

Table 7.8. Simulation results of PID controller in AVR system for β variation

Number of
β generations kρ ki kd Mo(%) ess ts tr Objective

0.5 25 0.6204 0.4929 0.2232 0.97 0.0097 0.4570 0.2973 0.0079

1 25 0.6584 0.5819 0.2548 1.71 0.0166 0.4000 0.2651 0.0030

1.5 25 0.6801 0.6260 0.2681 1.97 0.0186 0.3770 0.2523 0.0072

7.5 Conclusions

In this chapter, a hybrid combination of Euclidean distance-based genetic algorithm
and PSO algorithm are introduced for function optimization and the enhancement of
optimal tuning of the conventional PID controller. By incorporating the Euclidean
distance measure for selecting mutation or crossover points, the search space is well
explored. Therefore, GA can provide exact optimal solution, while it can avoid local
optimal solutions. Experiment results reveal the efficiency of the proposed approach
with a faster convergence and optimal solutions. The GA–PSO system proposed in
this chapter could be easily extended to model other complex problems involving
local optimal and global optimal solutions.

Owing to their popularity in the industrial world, over the past 50 years, several
approaches for determining PID controller parameters have been developed for stable
processes that are suitable for autotuning and adaptive control and for single input
single output (SISO) systems. In spite of the enormous amount of research work
reported in the tuning approaches, many PID controllers are poorly tuned in practice.
One of the reasons is that most of the tuning methods are derived for particular
processes and situations, and therefore apply well only to their own areas. It is a
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Table 7.9. Simulation results for PID controller tuning using different methods

β No. of genera-
tions

Controller type kp ki kd Mo(%) ess ts tr Evaluation
value

0.5

50
GA 0.5045 0.3654 0.1400 2.3004 0.0005 1.0010 0.4136 0.0176

PSO 0.6572 0.4816 0.2284 1.4589 0.0035 0.4280 0.2842 0.0077

GA–PSO 0.6310 0.4929 0.2232 0.8857 0.0083 0.4480 0.2941 0.0077

100
GA 0.5045 0.3080 0.1400 0.2261 0.0148 0.6590 0.4231 0.0108

PSO 0.6572 0.4816 0.2284 1.4589 0.0035 0.4280 0.2842 0.0077

GA–PSO 0.6554 0.5224 0.2374 1.3606 0.0095 0.4190 0.2779 0.0075

150
GA 0.5045 0.3142 0.1416 0.2254 0.0128 0.6570 0.4214 0.0108

PSO 0.6537 0.4852 0.2292 1.3115 0.0045 0.4300 0.2845 0.0076

GA–PSO 0.6447 0.5060 0.2350 0.8581 0.0086 0.4300 0.2825 0.0073

200
GA 0.5061 0.3080 0.1420 0.0044 0.0149 0.6600 0.4211 0.0106

PSO 0.6491 0.4915 0.2317 1.0493 0.0059 0.4300 0.2839 0.0075

GA–PSO 0.6447 0.5058 0.2350 0.8564 0.0085 0.4300 0.2825 0.0073

1

50
GA 0.9186 0.8100 0.3935 8.7179 0.0122 0.8550 0.1758 0.0083

PSO 0.7893 0.7196 0.3105 5.2491 0.0154 0.8320 0.2155 0.0069

GA–PSO 0.6415 0.4825 0.2274 0.8820 0.0055 0.4400 0.2889 0.0030

100
GA 0.8326 0.8100 0.3277 6.8331 0.0171 0.5570 0.2037 0.0058

PSO 0.6834 0.6096 0.2611 2.2200 0.0164 0.5340 0.2559 0.0040

GA–PSO 0.6657 0.5697 0.2548 1.4503 0.0143 0.3980 0.2639 0.0029

150
GA 0.8326 0.8100 0.3277 6.8331 0.0171 0.5570 0.2037 0.0058

PSO 0.6651 0.5690 0.2533 1.4511 0.0142 0.3990 0.2649 0.0029

GA–PSO 0.6523 0.5189 0.2398 1.0510 0.0094 0.4200 0.2773 0.0029

200
GA 0.8326 0.8100 0.3277 6.8329 0.0171 0.5570 0.2037 0.0058

PSO 0.6660 0.5682 0.2543 1.4285 0.0140 0.3980 0.2641 0.0029

GA–PSO 0.6522 0.5188 0.2398 1.0472 0.0094 0.8680 0.2773 0.0029

1.5

50
GA 0.8486 0.7165 0.2817 8.1337 0.0088 0.6690 0.2214 0.0155

PSO 0.6473 0.5000 0.2245 1.5674 0.0072 0.4350 0.2885 0.0079

GA–PSO 0.6801 0.6227 0.2681 1.9368 0.0183 0.3780 0.2523 0.0072

100
GA 0.8365 0.6903 0.3010 6.8031 0.0090 0.5920 0.2150 0.0136

PSO 0.6446 0.5050 0.2343 0.8779 0.0084 0.4300 0.2830 0.0074

GA–PSO 0.6795 0.6177 0.2681 1.8665 0.0179 0.3780 0.2525 0.0071

150
GA 0.8283 0.7143 0.3010 6.7151 0.0112 0.5950 0.2156 0.0135

PSO 0.6446 0.5044 0.2345 0.8612 0.0083 0.4300 0.2829 0.0073

GA–PSO 0.6795 0.6168 0.2681 1.8573 0.0178 0.3780 0.2526 0.0071

200
GA 0.8282 0.7143 0.3010 6.7122 0.0112 0.5950 0.2156 0.0135

PSO 0.6445 0.5043 0.2348 0.8399 0.0084 0.4300 0.2827 0.0073

GA–PSO 0.6794 0.6167 0.2681 1.8540 0.0178 0.8000 0.2526 0.0071
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common experience that we are not certain which tuning method should be chosen
to provide good control to a given process. Intelligent controllers could even self-
initialize and recalibrate even with little a priori knowledge especially due to the
occurrence of significant changes in the process dynamics.
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