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Abstract 
 

This article presents an algorithm for the automatic 

detection of circular shapes from complicated and noisy 

images. The algorithm is based on a hybrid technique 

composed of simulated annealing and differential 

evolution. A new fuzzy objective function has been derived 

for the edge map of a given image. Minimization of this 

function with a hybrid annealed differential evolution 

algorithm leads to the automatic detection of circles on 

the image. Simulation results over several synthetic as 

well as natural images with varying range of complexity 

validate the efficacy of the proposed technique in terms of 

its final accuracy, speed and robustness.   
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1. Introduction 
 

Circle and ellipse detection from digital images have 

received considerable attention over the last few decades 

in computer vision [1]. Until date the most popular 

approaches for circle detection have been based on Hough 

transform (HT) [2, 3]. Let (x, y) be the location of an edge 

pixel on a circle with center coordinates (a, b) and radius r 

then the circle can be expressed as: 

       222 )()( rbyax =−+−                                      

From this equation, every edge pixel of the image can be 

mapped into a conical surface in a three-dimensional (a, b, 

r) parameter space and this leads to the conventional HT 

[4].In order to overcome limitations  of HT researchers 

have proposed new approaches to HT e.g., the 

probabilistic HT [5], the randomized HT [6], and the 

fuzzy HT [7]. Lam and Yuen proposed an approach based 

on hypothesis filtering and HT to detect circles [8].  

As an alternative to the HT based techniques, the shape 

recognition problem in computer vision has also been 

handled with stochastic search methods that include 

random sample consensus [9], simulated annealing [10] 

and Genetic Algorithm (GA) [11]. In particular, GA has 

recently been used for important shape detection task e.g. 

Roth and Levine proposed use of GA for primitive 

extraction of images [11]. Lutton et al carried out a further 

improvement of the aforementioned method recently [12]. 

Yao et al came up with a multi-population GA to detect 

ellipses [13]. Ayala–Ramirez et al presented a GA based 

circle detector [14]. Their approach is capable of 

detecting multiple circles on real images but fails 

frequently to detect small and imperfect circles. 

Differential Evolution (DE), proposed by Storn and Price 

[15], is a simple yet powerful population-based stochastic 

search technique over the contiouous search space. DE 

has been sucessfully applied in diverse domains of science 

and engineering problems, such as mechanical 

engineering design [16],[17], data communication [18], 

chemical engineering [19], machine intelligence and 

pattern recognition [20]. In many cases, it has reportedly 

outperformed the GA or the particle swarm optimization 

(PSO) [21].  

In this paper, the selection mechanism of the classical DE 

has been modified by employing the concepts of the 

Simulated Annealing (SA) algorithm. SA belongs to a 

class of heuristic search algorithms called probabilistic 

hill-climbing [22], which dynamically alter the probability 

of accepting the inferior solutions. The hybrid algorithm 

developed in the scope of this work is referred to as the 

Annealed Differential Evolution (AnDE). Besides using 

an SA based selection scheme, the AnDE introduces a 

center of mass based mutation strategy, in which the trial 

vectors are stochastically attracted towards the mean 

vector of the current population, instead of the best one as 

done in the case of DE/current-to-best/bin and DE/best/2 

schemes. The efficacy of AnDE over a few other popular 

DE variants have been established through benchmark 

simulations in [23]. 

The remainder of this paper is organized as follows. 

Section 2 provides a brief outline of the classical DE 

family of algorithms and also reviews the previous works 

for the improvement of the performance of DE. Section 3 

briefly discusses the spirit of the SA algorithm and then 
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introduces the proposed hybrid algorithm.. Section 4 

describes candidate solution representation and also lays 

out the mathematical basis of the objective function. 

Results of computer simulation over several images have 

been presented in Section 5 and finally the paper is 

concluded in Section 6 with a discussion of future 

research directions. 

2. The DE and its variants – an overview 
 

DE starts with a population of N, D-dimensional search 

variable vectors or chromosomes in the terminology of 

evolutionary computing. The i-th vector of the population 

at iteration  (time) t is: 

        )](),....(),([)( ,2,1, txtxtxtX Diiii =
r

                              (1)                                              

In each iteration of the algorithm, for each population 

member )(tX
i

r
, a donor or trial vector )1( +tV

i

r
is created. 

It is the method of creating this donor vector that 

distiguishes  various DE schemes from one another. In 

“scheme DE1” (DE/rand/1), to create )1( +tV
i

r
, three 

vectors (say r1, r2, and r3) are randomly chosen from the 

current population. Next the difference of any two of these 

three vectors is scaled by a scalar F and the scaled 

difference is added to the third vector whence we obtain 

the donor vector:  
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The DE family of algorithms use two kinds of crossover,  

namely ‘exponential’ and ‘binary’.                    

‘Binary’ crossover  is implemented as follows:  

                                             if rand(0, 1) < Cr 

                

                =                   otherwise                                  (3) 

DE actually involves the Darwinian principle of “Survival 

of the fittest” in its selection process which may be 

outlined as, 

   =+ )1(tX i

r
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         (4)               

where f( ) is the function to be minimized. So if the new 

offspring yields a better value of the fitness function, it 

replaces its parent in the next generation; otherwise the 

parent is retained in the population. DE/current to best/1 

follows the same procedure except that the donor vector is 

created using two randomly selected members of the 

population as well as the best vector of the current time 

step:  

                                                                                                                                                       

                                                                                      

     

                                                                                    (5)                                            

where λ is another control parameter of DE in [0, 2]. To 

reduce the number of control parameters a usual choice is 

to put λ = F. Storn and Price [15] suggested a total of ten 

different working strategies for DE.  

 

3.    The Annealed DE algorithm 

 

As its name implies, the Simulated Annealing (SA) 

exploits an analogy between the way in which a metal 

cools and freezes into a minimum energy crystalline 

structure (the annealing process) and the search for a 

minimum in a more general system. The algorithm is 

based upon that of Metropolis et al. [24], which was 

originally proposed as a means of finding the equilibrium 

configuration of a collection of atoms at a given 

temperature. It was Kirkpatrick et al. [25] who proposed it 

as  the basis of an optimization technique for 

combinatorial (and other) problems. 

The algorithm employs a random search which not only 

accepts better solutions that decrease the objective 

function f (in case of a minimization problem), but also 

some inferior solutions that increase it. The latter are 

accepted with a probability: 
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T

f
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 Where f∆ is the change of the objective function over 

two successive iterations and T is a control parameter, 

known as the system `temperature' . 

Unlike the greedy selection strategy employed in the 

classical DE, the AnDE algorithm proposed here 

incorporates a typical SA type selection mechanism that 

conditionally accepts the inferior solutions to the next 

generation. Suppose at time step t = t, the i-th 

chromosome was )(tX i

r
and its offspring created through 

the DE type mutation and crossover operations at the next 

time step be )1( +tU i . Now if ))(())1(( tXftUf ii

rr
<+ , i.e. 

the offspring is better than the parent w.r.t the objective 

function, then )(tX i

r
is surely replaced in the next 

generation by )1( +tU i . But even if ))(())1(( tXftUf ii

rr
>+ , 

)1( +tU i may replace the parent chromosome )(tX i

r
with 

a probability of:   
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Which is same in spirit as (5). 

The SA algorithms require an annealing schedule for 

decreasing the control temperature T from an intial value 

T0 to a final value Tf. The AnDE algorithm, however, 

employs a very common temperature decrement rule 

known as the exponential cooling schedule (ECS), 

proposed by Kirkpatrick et al. [25]. According to this 



 

 

rule, the temperatures T(t) and T(t+1) over two successive 

time steps are related as: 

                     )(.)1( tTtT α=+                                    (8) 

Where α is constant close to, but smaller than 1.  

The AnDE also modifies the basic mutation scheme of the 

DE/best/1 given by (5) by replacing the best vector 

)(tX best

r
 by the mean of all the vectors belonging to the 

current generation. This mean vector can be regarded as 

the center of mass of the DE population (especially if we 

assume that the chromosomes are agents of equal mass in 

the multi-dimensional search space) and is given by: 
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Where NP is the total number of search variable vectors in 

the population. With this modification, the mutation 

scheme for trial vector generation in AnDE becomes: 
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The time-variation of Cr may be expressed in the form of 

the following equation, 

           
t
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 where Crmax and Crmin are the maximum and minimum 

values of Crossover rate Cr, t is the current time step and 

Tmax is the maximum time steps (i.e. the maximum 

number of iterations allowed). The algorithm encapsulates 

all these changes and pseudo-code of algorithm is 

available in [23]. 

 

4.  The AnDE Based Fuzzy Circle Detection 

Algorithm 
 

4.1 The Scheme for Population Initialization 
 

An individual member of the population of sample circle 

is actually a trial solution. Each sample circle is 

represented as a trial solution position TryxX ],,[ 000=
r

, 

where first two components of the vector are x  and y co-

ordinates of the center of that circle and third term stands 

for the radius. 

Let ),,( ppp ryx  be the p -th test circle in the population, 

where NPp )1(1= , NP  is the population size i.e. it denotes 

total number of test circles. In initialization suitable value 

is assigned to each of the three entries of the vectors. Two 

statistical properties of sample points on a circle are used 

in this regard, where one property is used to find a 

suitable value for co-ordinates of probable center of the 

test circle and, another is used to model its probable 

radius. These two properties are described below. Let us 

consider N2  number of equally spaced sample points on a 

circle of radius 
0r and center at ),( 00 yx . Now, i -th sample 

point may be designated by ))(),(( iyix .  

Where, i
N

rxix
π

cos)( 00 +=  

and Nii
N

ryiy 2)1(1,sin)( 00 =+=
π  

Let mean-point ),( YX be defined as, 
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Similarly,
0yY = .

00 , yYxX ==∴                                 (12)                                                          

 

Let us also define standard deviation, 
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To initialize k-th ))1(1( NPk =  test circle we form a set of 

km2  edge-points drawn at random from the edge-map, 

where ),(2 ULrandmk =  such that UL,  specify upper and 

lower limit of
km2 . Let ))(),(( iyix be the i-th edge-point, 

kmi 2)1(1= and ),,( kkk ryx  denotes the k-th test circle to 

be initialized. Now we assign values to three entries of the 

vector . 

We assign, ∑
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This initialization scheme is adopted with the expectation 

that if the selected edge points may lie on the actual circle 

or very close to it so that we may reach a good 

approximation of the center and radius.  

 

4.2 The Fuzzy Objective Function  

 
We are assuming that in the edge-map edge pixels are 

simply represented by ‘1’ and back-ground pixels by ‘0’. 



 

 

Let us consider a test circle be denoted by ),,( 000 ryx . And 

let A  be the edge matrix. We denote objective function 

be f . Let for the above mentioned test circle its value 

be
0f . ),,( 00,00 ryxAff =∴          

We define another function ),( yxP , which returns pixel 

value of a point ),( yx .  

 

                      ,1),( =yxP       if ),( yx  is an edge-point 

           ,0=  otherwise.     

 

For sampling we consider the family of circles with center 

at ),( 00 yx  with a radius varying in a range from δ−0r  

to δ+0r .  This forms the test-band, δ  being a parameter. 

After some trial and error we found that taking 
6

0r=δ is 

comfortable enough for this specific application. After 

this, 
SN  sample points are taken for each circle in test-

band. Sample points are positioned on the circle 

maintaining equal distance between each other. Let i-th 

sample point on a circle of test-band, having radius jr +0
 

)( δδ ≤≤− j  be denoted by ),(
j

i

j

i yx .      
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SNi )1(1=  and δδδδ ,1,........,1,0,1,........,1, −−+−−=j . 

 

An organized method for dealing with imprecise data is 

fuzzy logic [26]. It is basically a multi-valued logic that 

allows more human-like interpretation and reasoning in 

machines by resolving intermediate categories between 

notations such as true/false, hot/cold used in Boolean 

logic. In this work, to deal with real world images 

containing incomplete and noisy circles, the set of the 

points belonging to the circumference of the actual circle 

has been considered as a fuzzy set and we assign a 

membership function to each point over the fuzzy set. 

This membership function depends upon distance of 

sample point from the central circle of the test band (i.e. 

circle with radius
0r ). Let µ  be the membership function 

and its value be j
iµ  for sample point ),(

j
i

j
i yx . We define 

membership function as,  
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If ),(
j

i

j

i yx is not an edge-point, we can infer 0=
j

iµ  i.e. 

a zero membership ]0),([ =
j

i

j

i yxPQ . Let us consider 

now the case that ),(
j

i

j

i yx  is an edge-point. Then, 
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i −= .Clearly 1=

j
iµ , if 0=j . Membership 

is unity or maximum when sampled edge-point lies on 

central circle. Membership value decreases when j  

increases. If σ  decreases the function becomes  

more sharp cut-off or narrow-band. Now, normalized 

objective function corresponding to ),,( 000 ryx  for A  

edge-map is defined as following,  
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5. Experimental Results 
 

The test bed includes ten synthetic (handcrafted) gray-

scale images each of size 256×256 pixels. The natural 

images include a circular-shaped object among various 

other configurations. All the images were preprocessed 

using a standard edge-detector (Canny edge-detector in 

image-processing toolbox, MATLAB 7.0).  We have 

reported detailed results for three images in order to save 

space. In order to test the robustness of our algorithm, we 

have added salt and pepper noise to the synthetic images 

before the algorithm was applied. It also illustrates the 

performance of the algorithm in presence of such noisy 

and corrupted pixels.  Results are shown in Table 1. 

Detected circle is shown in thick line.      

 



 

 

Table 1: Test images with detected circles  

6. Conclusions 

 This paper has presented a novel application of the AnDE 

to the task of automatic circle detection from gray images.  

Also a new fuzzy fitness function was derived specifically 

for the circle detection task. Future research may focus on  

hybridizing DE with different Hough Transform based 

techniques for automatic shape extraction.  

 

 

 

Also application of the DE based techniques for automatic 

shape recognition by mobile robots may also be studied. 

In future we shall also attempt to compare the 

performance of our DE based algorithm with other 

evolutionary computation techniques on the circle 

detection problem quantitatively.                        
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